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Abstract: Marine protected areas (MPAs) are used to protect species, communities, and their associated
habitats, among other goals. Measuring MPA efficacy can be challenging, however, particularly when con-
sidering responses at the community level. We gathered 36 abundance and 14 biomass data sets on fish
assemblages and used meta-analysis to evaluate the ability of 22 distinct community diversity metrics to
detect differences in community structure between MPAs and nearby control sites. We also considered the
effects of 6 covariates—MPA size and age, MPA size and age interaction, latitude, total species richness, and
level of protection—on each metric. Some common metrics, such as species richness and Shannon diversity,
did not differ consistently between MPA and control sites, whereas other metrics, such as total abundance and
biomass, were consistently different across studies. Metric responses derived from the biomass data sets were
more consistent than those based on the abundance data sets, suggesting that community-level biomass differs
more predictably than abundance between MPA and control sites. Covariate analyses indicated that level of
protection, latitude, MPA size, and the interaction between MPA size and age affect metric performance.
These results highlight a handful of metrics, several of which are little known, that could be used to meet the
increasing demand for community-level indicators of MPA effectiveness.
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Uso de Medidas a Nivel de Comunidad para Monitorear los Efectos de las Áreas Marinas Protegidas sobre la
Biodiversidad

Resumen: Las áreas marinas protegidas (AMP) son usadas para proteger especies, comunidades y sus
hábitats asociados, además de tener otros objetivos. Sin embargo, medir la eficiencia de las AMP puede ser un
reto, particularmente cuando se consideran las respuestas a nivel de comunidad. Reunimos conjuntos de datos
sobre ensambles de peces, 36 conjuntos sobre abundancia y 14 sobre biomasa, y usamos un meta-análisis
para evaluar la habilidad de detección de diferencias en la estructura de las comunidades entre las AMP y
sitios cercanos de control de 22 medidas distintas de diversidad de comunidades. También consideramos los
efectos de seis covarianzas en cada medida - tamaño y edad de la AMP, interacción entre el tamaño y la
edad de la AMP, latitud, riqueza total de especies y nivel de protección. Algunas medidas comunes, como la
riqueza de especies y la diversidad de Shannon, no difirieron consistentemente entre las AMP y los sitios de
control, mientras que otras medidas, como la abundancia total y la biomasa, fueron diferentes de manera
consistente en los estudios. Las respuestas de las medidas, derivadas de los conjuntos de datos sobre biomasa,
fueron más consistentes que aquellas basadas en los conjuntos de datos sobre abundancia, lo que sugiere
que la biomasa a nivel de comunidad entre las AMP y los sitios de control difiere de manera más predecible
que la abundancia. Los análisis de covarianza indicaron que el nivel de protección, la latitud, el tamaño
de la AMP y la interacción entre el tamaño y la edad de la AMP afectan el desempeño de las medidas. Estos
resultados resaltan a un puñado de medidas, varias de las cuales son poco conocidas, que podŕıan usarse
para satisfacer la demanda creciente de indicadores a nivel de comunidad de la efectividad de las AMP.
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2 Biodiversity Metrics for MPAs
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Introduction

Preserving biodiversity is often cited as a reason for es-
tablishing marine protected areas (MPAs) (Greenstreet
2008). Community-level metrics measure a distinct and
important aspect of biodiversity, the number of differ-
ent species, and their relative abundance; often these
attributes are the focus of MPA designation. However,
only recently, with the ascendance of ecosystem-based
management and marine spatial planning, has manage-
ment focus shifted from the population to the community
and ecosystem level (e.g., Gaines et al. 2010; Halpern
et al. 2010; Shin & Shannon 2010). With this shift comes
a need to identify appropriate community-level indica-
tors to support evaluation of MPA effectiveness (Pelletier
et al. 2008).

The best-known and most common community-
level indicator is species richness (Pillans et al. 2007;
Lyashevska & Farnsworth 2012). Although easy to inter-
pret and useful under certain circumstances, species rich-
ness has limited ability to detect changes in community
composition (Russ 1985; Pillans et al. 2007; Lyashevska &
Farnsworth 2012) in part because whether species rich-
ness increases or decreases in response to MPA establish-
ment depends on the prior history of exploitation (Lester
et al. 2009). Additionally, complex trophic interactions
often mediate community-level responses to MPA estab-
lishment (Graham et al. 2003; Willis & Anderson 2003;
Takashina et al. 2012), causing species richness to change
in unexpected ways. Counter to expectations, numerous
studies show that species often decline in response to
MPA establishment, evidence of an indirect effect (i.e.,
increased predation or competition) due to protection
(Micheli et al. 2004). Finally, species richness only de-
scribes one aspect of the ecological community, the to-
tal number of species, whereas alternate metrics address
other aspects of community structure, such as the distri-
bution of abundance among species (Rice 2000; Pillans
et al. 2007; Pelletier et al. 2008).

Alternatives to species richness abound because
dozens of metrics exist for measuring community struc-
ture (Magurran & McGill 2011; Lyashevska & Farnsworth
2012). However, surprisingly few studies have investi-
gated the effectiveness of community-level metrics as
ecological indicators in an MPA context. Herein we de-
fine ecological indicators as variables based on data col-
lected in the field (or generated with a model) that can be
linked to a management objective or research question
(Pelletier et al. 2005).

Assessing MPA effectiveness is further complicated by
the fact that local conditions may play an important role

in determining the responses of a specific assemblage
(Micheli et al. 2004). Although the relative importance of
covariates such as MPA size and time since establishment,
fishing pressure outside the MPA, level of protection, and
latitude remains an active area of inquiry (e.g., Cote et al.
2001; Claudet et al. 2008; McClanahan et al. 2009; Edgar
et al. 2011; Ainsworth et al. 2012), researchers agree
on the importance of considering these—and other—
covariates in studying MPA effectiveness. Guidetti and
Sala (2007) conclude that MPAs and fished areas should
not just be viewed as 2 treatments in ecological studies,
rather these variables should be considered as factors that
mediate assemblage response to protection.

We compared various diversity metrics between MPAs
and adjacent control sites (assuming that the differences
are a result of MPA establishment and not other factors
[Discussion]). Our aim was to provide information on
which community-level metrics are robust indicators of
MPA response for management purposes. We also con-
sidered the influence of covariates on the performance
of these metrics, thereby providing guidance on which
conditions may favor the selection of certain metrics over
others. Both objectives call for a synthetic approach that
integrates results across studies. We therefore used meta-
analysis to combine information from multiple MPAs in
an objective, quantitative manner.

Methods

Using McGill (2011) as a guide, we selected 13
community-level metrics that measure distinct aspects of
community structure and have desirable statistical prop-
erties. We added 8 parametric (or semiparametric) met-
rics that have rarely been applied in the context of MPA
research so as to evaluate their performance relative to
more standard nonparametric metrics. These metrics are
familiar to researchers studying species abundance distri-
butions and have proven useful in other applied contexts
(Gray et al. 1979; Ugland & Gray 1982). Given their ability
to capture important aspects of community structure (us-
ing parameters that describe the shape and dispersion of
a species abundance distribution), we considered their
utility in detecting effects of MPA protection. We also
added total biomass to our set because of its common
usage in MPA studies. In total, we evaluated 22 metrics
(Table 1).

We gathered data sets on fish assemblage structure
in MPAs and nearby control sites with 2 separate meth-
ods. First, we extracted studies included in Micheli et al.
(2004), which yielded 15 data sets containing information

Conservation Biology
Volume 00, No. 0, 2015



Soykan & Lewison 3

Table 1. Classification of community-level metrics included in a study of indicator responses to marine protected area establishment.a

Metric Description Formula

Biomassb

total biomass total biomass of individuals sampled B
Abundancec

total abundance total number of individuals sampled N
γ scale β represents the scale parameter for the

gamma distribution

βα

�(α) xα−1e−βx

log normal μ mean of the lognormal distribution 1
xσ

√
2π

e− (ln x=μ)2

2σ2

log normal σ standard deviation of the lognormal
distribution

log series c estimated from the iterative solution of the
equation to the right

S/
N = (

1−c
c

)
(− ln(1 − c))

Dominanced

relative number of individuals in the most abundant
species divided by the total number of
individuals in the sample (also referred to as
Berger-Parker dominance)

n1
N

McNaughton number of individuals in the 2 most abundant
species divided by the total number of
individuals in the sample

n1+n2
N

Zipf-Mandelbrot c scale parameter for the Zipf-Mandelbrot
distribution

1/(i+b)c
∑N

i=1 (i+b)c

Evennesse

Gambin α calculated using a gamma distribution with the
scale parameter, β, set to 1 over the interval
0–0.99

1
�(α) xα−1e−x

eCDF slope slope of a line fit to the cumulative distribution
functioni for a community

eCDF inflection inflection point of the line fit to the cumulative
distribution function for a community

γ shape α represents the shape parameter for the
gamma distribution

βα

�(α) xα−1e−βx

Shannon evenness Shannon diversity metric standardized by the
number of species

H ′
ln S

Rarityf

log skew skew of the log-transformed data
percentage rare N/S percentage of species whose abundance is less

than the average abundance of species in
the sample

Richnessg

species richness number of species sampled S

Margalef diversity species richness standardized by the number
of individuals sampled

S−1
ln N

Log series α log series index α = N (1−c)
c

Diversityh

Shannon diversity diversity metric based on information theory H ′ = −∑
pi ln pi

j

Simpson diversity probability that any 2 individuals drawn at
random belong to the same species

∑
ni (ni−1)∑
N (N−1)

k

Zipf-Mandelbrot b shape parameter for the Zipf-Mandelbrot
Distribution

1/(i+b)c
∑N

i=1 (i+b)c

aThis framework is based on the one described in McGill (2011), although we treat his subgroups as distinct groups for simplicity. There are 7
main categories.
bIncludes only 1 metric, total biomass, which measures the total biomass of all individuals in the community.
cIncludes 5 metrics related to the total number of individuals in the community.
dIncludes 3 metrics related to the relative abundance of the most abundant individuals in the community.
eIncludes 5 metrics related to the distribution of abundance among species.
fIncludes 2 metrics related to the relative abundance of the rarest species in the community.
gIncludes 3 metrics related to the total number of species in the community.
hIncludes 3 metrics related to both species richness and evenness.
iA standardized plot of the proportion of points with a value (here abundance) less than a given value.
jThe pi is the proportion of individuals in the ith species.
kThe ni is the number of individuals of species i. [Correction added after online publication on January 8, 2015: Formatting of table corrected.]
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4 Biodiversity Metrics for MPAs

on fish abundance and 5 data sets containing information
on fish biomass inside and outside MPAs. Second, we did
a Web of Science search for the search terms Marine
Protected Area∗ or MPA∗ or Marine Reserve∗ and biodi-
versity or diversity or richness or biomass that resulted
in 4989 articles as of April 2011. We identified articles
that contained data on fish abundance or biomass both
inside and outside of a MPA and found an additional 21
abundance and 9 biomass data sets. Thus, we had a total
of 36 abundance and 14 biomass data sets (Supporting
Information). Given the modest number of studies, we
were unable to run separate analyses on subsets of stud-
ies that employed distinct sampling designs. This may
have introduced additional heterogeneity into our results,
which could make it more difficult to detect a pattern.

For each locale, replicate samples from within the MPA
were pooled, as were replicate samples from outside the
MPA. This resulted in 50 data sets from within the MPAs
and 50 from outside the MPAs (36 abundance and 14
biomass). The data sets were analyzed with MatLab soft-
ware written to calculate the 22 species diversity met-
rics used for this study and available upon request from
B.J. McGill) (Supporting Information). The abundance-
based and biomass-based data sets were kept separate for
all subsequent analyses.

To assess indicator response to MPA establishment
across studies, we used a modern meta-analysis (here-
after, meta-analysis), defined as a statistical technique that
combines the measures of effects from individual studies
into an estimate of the overall strength of the effect and
then uses this to determine significance (Rosenberg et al.
2000). Meta-analysis has become the preferred method
for combining data across studies in order to draw gen-
eral conclusions (Stewart 2009). Its advantages include
the ability to make use of sample size information from
the individual studies, the ability to quantify the overall
magnitude of the effect being studied, and the ability
to assess the overall agreement (homogeneity) or lack
thereof among studies (Rosenberg et al. 2000).

Following Cote et al. (2001), we used response ratio
(RR) as a measure of effect size for the meta-analysis be-
cause it can be calculated without knowledge of sample
variances (Rosenberg et al. 2000). The RR is defined as the
ratio of the means measured in experimental and control
areas (i.e., in the present study, indicator values inside
and outside each MPA). We used the natural logarithm
of the RR (Rosenberg et al. 2000), defined as ln RR =
ln[(XI)(XO)−1], where XI and XO are the indicator values
in the experimental (inside MPA) and control (outside
MPA) areas.

To account for variation among studies in sampling ef-
fort, we used a weighting scheme based on the total area
censused in each study, following Cote et al. (2001). Each
indicator estimate was weighted by the natural logarithm
of the total area covered by the census from which the es-
timate was obtained. Separate meta-analyses were carried

out for each indicator-response variable combination to
quantify the overall effect of protection (e.g., a separate
meta-analysis of Shannon diversity was done for both the
abundance and biomass data sets). This resulted in 44
meta-analyses. All mean effect sizes, a measure of the
effect of protection across studies, are presented as back-
transformed values so that they can be interpreted easily
as the ratio of densities inside to outside the MPAs. Effect
sizes were considered significantly different from 1 when
the 95% CI did not include 1 after back-transformation.
Analyses were conducted using the metafor package in R
(Viechtbauer 2010; R Development Core Team 2014).

We assessed the sensitivity of our results to influen-
tial studies using leave-one-out regression, also with the
metafor package in R. Leave-one-out regression, as its
name implies, involves sequentially dropping each data
point, refitting the model, and comparing the new mod-
els to the full model developed using every data point
(Belsley et al. 1980). It indicates the sensitivity of the
results to individual data points and draws attention to
the relative influence of each.

For each indicator, to test whether all MPAs showed
homogeneous responses to protection, the heterogeneity
statistic was calculated and compared with a chi-square
distribution with n − 1 df (where n is the number
of MPAs included in the analysis) (Supporting Informa-
tion). Because numerous indicators had heterogeneous
responses to protection, we used random-effects mod-
els for all meta-analyses. This maintains comparability of
results across indicators while assuring that the results ob-
tained are conservative. Random-effects models account
for the fact that, in addition to sampling error, there is a
true random component of variation in effect sizes among
studies (Rosenberg et al. 2000).

We then used the metaphor package in R (Viechtbauer
2010; R Development Core Team 2014) to analyze the re-
lationship between MPA effect size and the 6 covariates
which characterized each MPA: latitude, ln(MPA size),
MPA age at the time of the census, an interaction term for
MPA size and age (ln[size∗age]), total fish species richness
surveyed (both inside and outside the MPA), and level of
protection (partial vs. full). We used multiple linear re-
gression to reduce the number of statistical analyses and
to allow for the effect of one covariate to influence the
effect of the others. Separate analyses were performed for
each indicator-response variable combination, resulting
in 44 multiple regressions (22 for each of the 2 response
variables, abundance and biomass; see the Supporting
Information for further methodological details).

Results

Of the 21 indicators considered for the abundance
data sets, 3 had effect sizes that differed significantly
from 1 at an alpha level of 0.05 (Fig. 1; Supporting
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Figure 1. Mean effect size and 95% confidence
intervals for the 21 metrics used on the fish
abundance data sets. See Table 1 for metric
definitions. The mean values and associated
confidence intervals are the result of
back-transformation of mean values and intervals
calculated for log-transformed data. An effect size >1
means metric values in marine protected areas
(MPAs) are greater than at control sites, whereas effect
sizes <1 mean the opposite. Metrics whose confidence
intervals do not include 1 differ significantly between
MPA and control sites across studies (at alpha 0.05).

Information). These were total abundance, lognormal μ,
and log skew (see Table 1 for definitions of all metrics
used in this study). One other metric, γ scale, had an
effect size that differed from 1 at an alpha level of 0.1
(Supporting Information).

Of the 21 indicators considered for the biomass data
sets, 5 had effect sizes that differed significantly from 1
at an alpha level of 0.05, including total biomass, eCDF
slope, lognormal μ, log series α, and log skew (Fig. 2;
Supporting Information). An additional 7 metrics had ef-
fect sizes that differed from 1 at an alpha level of 0.1
(Supporting Information). These were γ scale, γ shape,
McNaughton dominance, relative dominance, Shannon
diversity, Shannon evenness, and Simpson diversity.

Leave-one-out regression results suggested that these
results were robust to influential data points (see Sup-
porting Information for details).

Latitude had the most influence on metric performance
for the abundance data sets; for the biomass data sets it
was level of protection (Supporting Information). For the

Figure 2. Mean effect size and 95% confidence
intervals for the 21 metrics used on the fish biomass
data sets. See Table 1 for metric definitions. The mean
values and associated confidence intervals are the
result of back-transformation of mean values and
intervals calculated for log-transformed data. An effect
size >1 means metric values in marine protected
areas (MPAs) are greater than at control sites,
whereas effect sizes <1 mean the opposite. Metrics
whose confidence intervals do not include 1 differ
significantly between MPA and control sites across
studies (at alpha 0.05).

abundance data sets, increasing latitude had a significant
negative effect on abundance. MPA size, age, and the
interaction between size and age had significant effects
on log skew (the effects of size and age were negative,
whereas the effect of the interaction was positive). With
the biomass data sets, full protection had a significant
negative effect on McNaughton dominance, Simpson di-
versity, and Zipf-Mandelbrot c, and a significant positive
effect on γ shape, Shannon diversity, Shannon evenness,
and Zipf-Mandelbrot b (Supporting Information). Other
covariates with significant effects on metric performance
for the biomass data sets included the interaction be-
tween MPA size and age (negative effect on biomass) and
latitude (positive effect on γ shape).

Discussion

Although the use of MPAs as a spatial management instru-
ment has spread around the world, our ability to evaluate
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Table 2. Indicators of community-level response to marine protected
area establishment recommended for use by managers.

Category metric (s)

Biomass total biomass
Abundance total abundance & log normal μ
Dominance McNaughton & relative dominance
Evenness eCDF slope
Rarity log skew
Richness log series α
Diversity Shannon & Simpson diversity

the effects of MPA protection is nascent, and for the com-
munity level, robust metrics have not been identified. The
variation in metric responses we found draws attention
to the importance of indicator selection for the evalua-
tion of MPA effectiveness. Some commonly used metrics,
such as species richness and Shannon diversity, did not
respond consistently across MPAs, suggesting that they
are not very useful for assessment purposes. However,
other common metrics, such as total abundance and total
biomass, performed quite well, which supports their use
as indicators of MPA effectiveness. Importantly, several
little-used metrics, such as log skew and lognormal μ,
were also consistently able to capture MPA effects (see
Table 2 for a full list of recommended metrics).

The disparity in metric performance between biomass-
and abundance-based data sets supports the assertion
that biomass provides a more robust measure of com-
munity response to MPA establishment than abundance
(Garćıa-Charton et al. 2008; Lester et al. 2009). More than
50% of biomass metrics responded significantly to MPA
establishment at an alpha level of 0.1, whereas <25%
of abundance-data metrics responded comparably. This
discrepancy likely reflects the fact that fish size increases
following MPA establishment (Halpern 2003; Pillans et al.
2007; Lester et al. 2009). However, this difference may
also result from the complex trophic interactions that
accompany an increase in large predatory fishes (e.g.,
Graham et al. 2003; Harborne et al. 2008; Takashina et al.
2012). These results support the growing call for report-
ing of biomass (and more specifically body size) data in
MPA effects studies (Lester et al. 2009).

Biomass and abundance behave in fundamentally dif-
ferent ways following MPA establishment. Variation in
abundance among species decreases (i.e., the evenness of
the community increases) as target species populations
rebound and prey species abundances decline (due to
top–down control by increasingly abundant predators).
In contrast, variation in biomass among species increases
as target species, which generally include larger-bodied
taxa, have an opportunity to grow to full size. In our
study, abundance-data metrics which measured even-
ness, rarity, and dominance such as log skew, eCDF
slope, and relative dominance followed patterns that
were the opposite of those for biomass-data metrics. If
measuring abundance, evenness increased whereas rarity

and dominance decreased following MPA establishment;
for biomass the pattern was inverted.

Encouragingly, of the 7 categories of indicators tested,
5 (biomass, abundance, evenness, rarity, and richness)
had at least 1 metric that detected a significant difference
at an alpha level of 0.05, whereas all 7 groups had at
least 1 metric that detected a significant difference at an
alpha level of 0.1. This suggests that the different aspects
of species diversity these metrics measure all respond to
MPA establishment and can be used to monitor MPAs
effectively. Each of these indicator categories has rel-
evance to management, reflecting different aspects of
community composition that might be the target of MPA
protection (Table 3). Total biomass reflects both the size
of individuals and their abundance. Increasing both is
often a core goal of MPA protection, as is increasing the
total number of species. Evenness, dominance, and rarity
reflect the distribution of abundances and biomass among
species. Disturbed communities are often dominated by
one or a handful of species that tolerate human activity,
whereas species that would normally be present are un-
common (Dornelas et al. 2011). Such communities are
less stable and provide fewer ecosystem services (Worm
et al. 2006). Thus, these community properties fit into
the larger goals of ecosystem-based management, making
it important for managers to monitor how metrics that
measure these properties change in response to MPA
establishment. Finally, species heterogeneity integrates
the number of species and their relative abundance. Met-
rics that measure heterogeneity, such as Shannon and
Simpson diversity, are among the most commonly used
in biodiversity studies, making their measurement and
monitoring useful for comparative purposes.

Overall, relatively few of the regression models identi-
fied statistically significant covariates. For the abundance
data sets, total abundance responded to latitude, with
the RR declining as latitude increased. In other words,
MPA protection had a greater effect on total abundance
in more tropical locales. Log skew was influenced by
MPA size, age, and the interaction between size and age.
The negative effects of size and age on log skew were
consistent with expectations that older and larger MPAs
will have fewer rare species. A positive coefficient for
the interaction term likely accounted for some large, old
MPAs having more rare species than expected, perhaps
due to poor enforcement or high fishing pressure outside
the reserve.

For the biomass-based data sets, numerous metrics re-
sponded to level of protection; the most responsive met-
rics were those that measured dominance (McNaughton
dominance and Zipf-Mandelbrot c), evenness (Shannon
evenness and γ shape), and heterogeneity (Shannon
diversity, Simpson diversity, and Zipf-Mandelbrot b).
The coefficient values all suggested that the metrics re-
sponded as expected to decreases in fishing pressure in
no-take MPAs (Supporting Information). The influence of
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Table 3. Management relevance of the community-level metrics that
measure the effects of marine protected area establishment included
in this study.a

Management Expected response to
Metric relevanceb MPA establishment

Biomass 1, 2, 3 increases
Abundance 3 usually increases, but

may decrease if
species composition
shifts from small to
large-bodied species

Dominance 4 usually decreases if
counting number of
species; may increase
if counting biomass of
species

Evenness 5 usually increases if
counting number of
species; may decrease
if counting biomass of
species

Rarity 6 similar to dominance
Richness 3, 7 usually increases; may

decline or not change
depending on level of
fishing pressure prior
to MPA establishment
or due to altered
trophic interactions
within the MPA

Heterogeneity 3, 7 similar to richness

aIdeally estimates of these metrics in the MPA should be considered
relative to 3 reference points: the area encompassed by the MPA
prior to protection; nearby unprotected areas; and large MPAs or un-
fished sites (e.g., around remote islands) in the same biogeographic
province. Values for these sites provide information on the state of
the fish community in the MPA and its trajectory relative to the
past, currently fished sites, and unfished (or lightly fished) baseline
endpoints. If these reference points are unavailable, managers can
examine the change in the metric over time to determine if it is follow-
ing the expected trajectory described above. Together these categories
of indicators provide complementary information on the state of the
fish community.
bDefinitions: 1, fisheries spillover (i.e., bolster the fish stock for sur-
rounding fisheries); 2, correlated with other metrics of interest to
managers (e.g., maximum body length, growth rate, lifespan [Mc-
Clanahan et al. 2014]); 3, mandated by legislation, often listed as a
goal of MPA establishment; 4, indicator of disturbance; 5, enhanced
ecosystem function and services; 6, rare species often the focus of
conservation efforts; 7, commonly used (enables comparisons with
other MPAs). [Correction added after online publication on January
8, 2015: “Letter definitions” in note b changed to “Definitions”.]

level of protection on so many metrics supports previous
assertions that partial versus no-take MPAs have differ-
ent effects on ecological communities (Lester & Halpern
2008; Edgar et al. 2011). The effect of the interaction
between MPA size and age was negative for biomass, but
each covariate on its own had a positive, albeit not signifi-
cant, coefficient (perhaps for the same reasons elaborated
above for log skew).

Just as most MPA effects studies have significant short-
comings (Harborne et al. 2008), so too will the syn-
theses based on those studies. For example, Edgar and

Stuart-Smith’s (2009) results suggest that MPAs are sit-
uated in areas with few fishery resources, biasing com-
parisons between them and adjacent fished sites (which
generally had greater total biomass and total abundance
than the newly established MPAs). Any study without an
appropriate before–after, control-impact sampling design
may risk confounding MPA effects with natural variability
(Underwood 1994). These are important considerations
during sampling design (Fraschetti et al. 2002), but they
cannot be incorporated into meta-analyses until sufficient
studies using the appropriate design have been con-
ducted and their results published (along with detailed
data on species abundance and biomass in protected and
control sites).

We did not have information on a number of other
covariates that influence MPA effectiveness, including hu-
man population density, habitat variables, landscape-level
factors, and fishing pressure outside the MPA (Cote et al.
2001; Edgar & Stuart-Smith 2009; Pollnac et al. 2010).
Including these and other factors in the analysis would
likely reduce the heterogeneity among studies and pro-
duce more statistically significant results. Nevertheless,
we doubt that it would fundamentally alter the conclu-
sions of our study.

A final caveat to consider is that species diversity met-
rics, even the broad range presented herein, measure only
certain aspects of biodiversity (Lyashevska & Farnsworth
2012). It is therefore essential that managers decide a
priori what the most relevant biological variables to de-
pict MPA effects are (Amand et al. 2004). Other indices,
such as those that measure biological originality, trait or
functional diversity, or phylogenetic diversity exist and
are worthy of consideration (Dornelas et al. 2011).

Our results provide important guidance to managers
interested in monitoring biodiversity at the community
level. The metrics highlighted in Table 2 are robust to the
heterogeneity that is unavoidable in meta-analytic studies
and should be well situated to handle the task of compar-
ing control and MPA samples from a single locale. More-
over, these metrics are easily calculated using routinely
collected data (e.g., number and relative abundance of
the species detected during surveys [see Supporting In-
formation for details on how to obtain the software used
to calculate the metrics discussed herein]) and can readily
be incorporated into a monitoring framework. With the
increasing need to evaluate community-level effects of
MPAs, we suggest that conservation managers familiarize
themselves with the various metrics that exist, selecting
those that perform well in a specific MPA context and
are aligned with management objectives.
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