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Abstract. Fisheries bycatch, or incidental take, of large vertebrates such as sea turtles,
seabirds, and marine mammals, is a pressing conservation and fisheries management issue.
Identifying spatial patterns of bycatch is an important element in managing and mitigating
bycatch occurrences. Because bycatch of these taxa involves rare events and fishing effort is
highly variable in space and time, maps of raw bycatch rates (the ratio of bycatch to fishing
effort) can be misleading. Here we show how mapping bycatch can be enhanced through the
use of Bayesian hierarchical spatial models. We compare model-based estimates of bycatch
rates to raw rates. The model-based estimates were more precise and fit the data well. Using
these results, we demonstrate the utility of this approach for providing information to
managers on bycatch probabilities and cross-taxa bycatch comparisons. To illustrate this
approach, we present an analysis of bycatch data from the U.S. gill net fishery for groundfish
in the northwest Atlantic. The goals of this analysis are to produce more reliable estimates of
bycatch rates, assess similarity of spatial patterns between taxa, and identify areas of elevated
risk of bycatch.

Key words: Bayesian spatial models; bycatch; conditional autoregressive prior; fisheries mapping;
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INTRODUCTION

Fisheries bycatch, or incidental take, is a pressing

conservation and fisheries management issue worldwide

(Kelleher 2005). There is particular concern regarding

bycatch of large pelagic and coastal vertebrates (Lew-

ison et al. 2004). Given the efforts to mitigate and

minimize bycatch of these vulnerable species, maps of

bycatch events have a variety of uses. They are a

powerful exploratory tool that can be used to describe

the spatial variation in bycatch; in particular they may

identify bycatch ‘‘hotspots’’ for particular taxa. In

addition, bycatch maps can help site and then fine tune

the location and extent of management areas. For

example, the temporary closure of a given area, referred

to as a time-area closure, has been used in numerous

fisheries to reduce the amount of bycatch of protected

species. Examples include harbor porpoises in the Gulf

of Maine (U.S. Department of Commerce 1998), sea

turtles in the California drift net fishery (Caretta et al.

2005), and seabirds in the Southern Ocean (Croxall and

Nicol 2004). Finally, bycatch maps can also be

compared to the spatial distribution of environmental

factors (e.g., sea surface temperature, currents, or

eddies) to improve our understanding of the oceano-

graphic context of animal distribution and subsequent

fisheries bycatch (Polovina et al. 2004, 2006, James et al.

2005).

There are several inherent features of bycatch data on

large vertebrates that make mapping these data chal-

lenging. Bycatch is a rare event, but although the

majority of counts will be zero there may also be large

counts resulting from aggregations of animals. This

typically results in a distribution that is overdispersed

relative to the Poisson assumption. Another feature is

the spatial resolution of the data, particularly in how the

bycatch event is geographically referenced. Bycatch data

may be georeferenced by the point location of the fishing

haul or set, but often a bycatch event may be referenced

by a spatial area such as a grid cell. A further

challenging feature concerns the distribution of fishing

effort. Because the goal of a fishery is to target particular

fish species, fishing effort is nonrandomly distributed.

Since the number of bycatch events is expected to be

positively correlated to the effort expended in a

particular area, a simple map showing the number of

bycatch events without accounting for this spatial

variation in effort will be misleading. It is more

appropriate to construct maps of bycatch rates, which

are the ratio of bycatch to fishing effort.

Given the challenges of modeling and mapping

bycatch data, we present an approach that quantifies

the amount of true spatial variation in bycatch rates

between grid cells. A map of raw bycatch rates can

misrepresent the true spatial distribution of bycatch

rates. For example, suppose a region is divided into N
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contiguous areas, i ¼ 1, . . . , N. If Oi represents the

observed bycatch in area i and Ei represents the

observed fishing effort in area i, then the raw bycatch

rate Ri, also the maximum likelihood estimate under

Poisson assumptions on Oi, is computed as

Ri ¼
Oi

Ei
ð1Þ

with a standard error given by

SEðRiÞ ¼
ffiffiffiffiffi
Oi

p

Ei
ð2Þ

(Leyland and Davies 2005).

When observed fishing effort in an area is low, a small

change to the number of observed bycatch events will

result in a large change to the raw rate. This may give

rise to unusually high or low rates in areas of low effort.

This illustrates the central problem with raw rates: some

areas may appear to have higher bycatch rates only

because they have low observed fishing effort. Accord-

ingly, the variability of the raw rate is inversely

proportional to fishing effort (Eq. 2). Thus, given an

equal number of observed bycatch events, the standard

error for a rate estimated with low effort will be larger

compared to a rate estimated with high effort. An

additional problem of using raw rates surrounds the

treatment of zeros. If the observed bycatch in an area

was zero then the standard error is also zero, but this

does not allow for any random variation in the expected

count.

Here we present a case study in which we illustrate a

model-based approach for the construction of bycatch

maps to estimate the distribution of true bycatch rates

while accounting for rarity of bycatch and differences in

effort among areas. We demonstrate the utility of this

approach using marine mammal and seabird bycatch data

collected from the U.S. gill net fishery for groundfish in

the northwest Atlantic, which operates from the U.S.–

Canada border in the north to the North Carolina–South

Carolina border in the south. The approach presented

uses a spatial model developed for epidemiology and

public health (Besag et al. 1991, Cressie et al. 2000, Best et

al. 2005) that can separate the variability in true bycatch

rates from random variation: something that is not

possible with maps of raw rates. The model uses data

from neighboring areas to gain precision in an estimated

rate for a particular area (or grid cell) by an amount that

depends on its observed fishing effort. Areas with low

fishing effort make more use of the data from surrounding

areas to gain precision. The result is a spatial map of

smoothed bycatch rates, with greater stability in estimates

for individual areas, allowing more confidence to be

placed in their interpretation.

Using these data, we first model the bycatch rates of

marine mammals and seabirds using Bayesian hierar-

chical spatial models. We then illustrate two novel

applications of this approach: mapping the probability

that bycatch exceeds a specified threshold rate of interest

and identifying areas of high multispecies or taxa

bycatch. A map of exceedence probabilities identifies

areas in which bycatch rates are likely to be above a

particular threshold, a risk level that can be set to reflect

the population status of a particular species of

management or conservation concern. The multitaxa

application considers how the spatial distribution of

bycatch rates varies among taxa. Typically, bycatch is

evaluated for a single species. However, cross-taxa

analyses provide a broader perspective on spatial

patterns of bycatch by considering bycatch patterns

across taxa and can facilitate management efficiency in

identifying zones (e.g., time-area closure candidates)

based on a more comprehensive understanding of the

ecological impacts of a particular fishery.

METHODS

Data

Data used in the analyses were collected by National

Marine Fisheries Service, Northeast Fisheries Science

Center (NMFS, NEFSC) observers onboard vessels of

the U.S. gill net fleet (NMFS Northeast Fisheries

Observer Program, unpublished data) (see Plate 1).

Observers are placed on a random sample of fishing

vessels and record location of the net, target species,

number of nets in the string, mesh size, soak duration,

depth at which the net was set, presence or absence of

pingers, and bycatch per haul. Due to confidentiality

agreements, the spatial information for each haul was

aggregated to 0.58 3 0.58 square grid cells.

There were 65 712 hauls from 1440 trips from 1990 to

2004. In order to increase our sample size, we had to

collate data either across years or across seasons. We

expected that there would be relatively little interannual

variability in animal movements within a season (see

Read and Westgate 1997). In addition, management

tools, especially time-area closures, can be seasonal, but

need to be consistent across years. Thus, we collated

data across years. Marine mammals and seabirds in this

region have known seasonal movement (Read and

Westgate 1997, Ronconi 2007), so we split the data into

four seasons: Season 1 (January–March), Season 2

(April–June), Season 3 (July–September), and Season 4

(October–December). In each season, we used the total

number of bycatch events and total fishing effort from

all hauls observed in a grid cell to construct the model.

Hauls were observed in 83, 112, 87, and 93 grid cells

during Seasons 1–4, respectively. After removing isolat-

ed groups of grid cells (one or more grid cells defines a

group) for which there were no observed bycatch events

in any cell (requirement of the model fit), this was

reduced to 82, 102, 54, and 82 grid cells for each season,

respectively. Since fishing effort in Season 3 was

restricted to a much smaller spatial region compared

with the other three seasons, we excluded Season 3 from

the analyses.
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We used net length (meters) multiplied by soak time

(hours) as a measure of fishing effort. We also could

have used the number of hauls as a unit of effort.

However, the correlation between total hauls and total

net length by soak time per grid cell was high (r¼ 0.879,

0.941, and 0.95 for Seasons 1, 2, and 4, respectively; P ,

0.001) so we are confident that using total hauls would

not have changed the results significantly. Bycatch rates

are presented in the results as the number of individuals

caught per 1000 units of effort.

MODELS

Single-taxon analysis

The methodology for smoothing spatial data is widely

accepted as a method in mapping of diseases in

epidemiology and public health (e.g., see Besag et al.

1991, Knorr-Held and Besag 1998, Cressie et al. 2000,

Dongchu et al. 2000, MacNab and Dean 2002, Best et

al. 2005). Here, we adopt a similar approach proposed

by Besag et al. (1991) and smooth raw rates using a

Bayesian hierarchical spatial model of the form

Oi ; PoissonðEiRiÞ
logðRiÞ ¼ aþ Si þ Ui

ð3Þ

where a is the average log bycatch rate across the whole

region and Si and Ui are random effects capturing the

deviation of the expected bycatch rates in area i from the

regional average. The random effects can be thought of

as representing the effect of unobserved factors that

have increased the variability in bycatch rates beyond

that expected by the Poisson distribution alone: Si

represents the effects of unknown covariates that are

spatially correlated, while Ui represents the effects of

spatially unstructured covariates. The Besag model has

the advantage of flexibility; it allows for both spatially

structured correlation and unstructured overdispersion

in bycatch rates using random effects Si and Ui,

respectively, but lets the data decide how to partition
the extra-Poisson variability between the two random
effects.

We fit Model 3 to the aggregated marine mammal
bycatch data. A conditional autoregressive (CAR) prior

was assigned to the spatial effects Si and a normal prior
to the nonspatial effects Ui. Thus,

SijSj; i 6¼ j ; N s̄;
r2

s

k

0
@

1
A

Ui ; Nð0;r2
uÞ

where Sj are all areas excluding the ith area, s̄ is the
average of the random effects Sj that are neighboring

areas of Si, and k is the number of neighbors. The spatial
random effects Si are smoothed towards the mean of the
spatial random effects in neighboring areas, to account

for the spatial dependence, by an amount that depends
on the effort in that area and its number of neighbors k.

We define a set of neighbors for grid cell i as all grid cells
that share a common boundary to grid cell i.

Cross-taxa analysis

The model for the cross-taxa analysis is of the form

O1i ; PoissonðEiR1iÞ
O2i ; PoissonðEiR2iÞ

logðR1iÞ ¼ a1 þ S1i þ U1i

logðR2iÞ ¼ a2 þ S2i þ U2i

ð4Þ

where O1i is the observed marine mammal bycatch and
O2i is the observed seabird bycatch in grid cell i. The
subscripts 1 and 2 identify the terms in Model 4 for

marine mammals and seabirds, respectively. We as-
sumed independent normal priors with mean zero and

variances r2
1u and r2

2u for U1i and U2i, respectively. The

PLATE 1. Retrieving a gillnet from the water. Photo credit: Chris Doley, courtesy of the National Oceanic and Atmospheric
Administration Restoration Center.
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model assumes that for each taxon the bycatch rates are

spatially correlated and that within an area bycatch rates

are correlated among taxa. These assumptions are

represented by the intrinsic bivariate normal CAR prior

(Thomas et al. 2004). This gives the distribution of S1i

and S2i as

S1i

S2i
j S1j

Sj
i 6¼ j ; N

s̄1

s̄2

� �
;

r2
1s

k

r12s

k

r12s

k

r2
2s

k

2
66664

3
77775

0
BBBB@

1
CCCCA ð5Þ

where s̄1 and s̄2 are the averages of all spatial random

effects that are neighboring areas of S1i and S2i,

respectively, r2
1s and r2

2s are their conditional variances,

and r12s is the conditional covariance between S1 and S2

within a grid cell.

The main focus of this cross-taxa analysis is to

calculate the within grid cell conditional correlation

between the spatial components S1i and S2i:

q ¼ r12sffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1sr
2
2s

q :

Values for q close to one indicate a strong positive

correlation between the bycatch rates of marine

mammals and seabirds across all cells. This would

suggest that the spatial patterns of their bycatch rates

are similar due to shared spatially correlated covariates.

The single-taxon and cross-taxa analyses for each

season were performed using Markov chain Monte

Carlo (MCMC) simulations in WinBUGS 1.4 (Spiegel-

halter et al. 2003). We specified noninformative inde-

pendent priors for parameters in the model. As a

requirement of fitting this type of model in WinBUGS,

the mean rates (a, a1, a2) were given improper uniform

priors on the whole real line. Based upon suggestions by

Gelman (2006), the standard deviation parameters ru,

rs, r1u, and r2u were given uniform distributions on the

interval [0, 100]. The precision parameter (inverse

variance) of the intrinsic bivariate normal CAR prior

was given a Wishart (R, p) distribution. To represent

vague prior knowledge about the precision, we set R

equal to a 2 3 2 identity matrix and p equal to 2

(Spiegelhalter et al. 1996). We monitored convergence

by simulating three independent runs with widely

dispersed initial values. We assumed the runs had

converged when the means and 95% credible intervals

of each run were similar to runs combined (Brooks and

Gelman 1998). Convergence was achieved after 10 000

iterations and results are based on the next 200 000

iterations from one chain, keeping one in every 10

iterations to reduce autocorrelation in the samples.

In a Bayesian analysis a posterior distribution is

obtained for the bycatch rate in each grid cell, describing

how probable different bycatch rates are, given the

observed bycatch. Results of the fitted models are

presented as maps of the estimated posterior median

bycatch rates. Mapping the mean or median posterior

value does not fully exploit the posterior distribution

that is obtained for the bycatch rate in each grid cell.

Therefore, we also consider posterior probabilities that

the estimated area-specific bycatch rate R̂i exceeds a

specified threshold of interest. We set the threshold level

at 0.0005 for illustration purposes only. To investigate

the relative contribution of the unstructured and

spatially structured components to the extra-Poisson

variation, we calculated the quantity w¼ vars/(varsþr2
u)

(Thogmartin et al. 2004), where vars is the marginal

variance of the spatial component. We approximate the

posterior distribution of the marginal variance using the

empirical variance of the spatial random effects.

RESULTS

The aggregated bycatch data are typical of over-

dispersed data. The distribution of counts of marine

mammals encountered during Seasons 1, 2, and 4 (after

data reduction) was highly skewed to the right, with 62%

of the grid cells having zero bycatch (Fig. 1a). Fig. 1b

gives a comparison of the raw marine mammal bycatch

rates with the fishing effort for grid cells from Season 1.

Grid cells with low fishing effort had the highest raw

rates, illustrating the tendency for areas of low fishing

effort to be associated with extremely high or low raw

bycatch rates.

Single-taxon analysis

Model selection.—We considered whether a spatial

component was necessary in the model by looking at the

strength of spatial autocorrelation in random effects Ui

estimated from Model 3 fit with no spatial effects Si.

Moran’s I was calculated for distance classes of width 60

km (distances measured at centroids of grid squares),

and Monte Carlo permutation procedures were used

with 1000 permutations to test the significance of the

autocorrelation for each distance class. Estimates of Ui

showed evidence of spatial dependence. The spatial

correlograms of the Ui’s for Seasons 1, 2, and 4 are

displayed in Fig. 2. In all seasons, there was significant

positive correlation in bycatch rates observed up to 60

km apart. As distances between the centroids of

neighboring grid squares are ,60 km, a model with

only nonspatial effects is evidently inappropriate.

Model 3, with spatial and nonspatial random effects,

was compared to a model with only spatial effects using

the deviance information criterion (DIC; Spiegelhalter et

al. 2002). The DIC is the Bayesian model selection tool;

the preferred, most parsimonious model is one with the

lowest DIC. The difference in DIC between competing

models and the one with lowest DIC (DDIC) must be

greater than two for the support to lie solely with the

latter (Spiegelhalter et al. 2002). Values of the DIC are

given in Table 1. With the exception of Season 4, the

model with spatial and nonspatial effects was the

favored model (DDIC . 2). Both models deserved

similar support in Season 4 (DDIC ¼ 0.373). However,
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we present results from fitting the simpler model, with

only a spatial random effect, to marine mammal

bycatch. Similarly, we drop the nonspatial random

effect U1i from the marine mammal component of the

cross-taxa model when fit to Season 4 data. The relative

contributions of the spatial and nonspatial components

to the extra-Poisson variation in Model 3 gave further

support to the final models selected. Approximately

31%, 58%, and 85% of the extra-Poisson variation was

attributable to unknown spatially correlated covariates

in Seasons 1, 2, and 4, respectively (Table 1).

Goodness-of-fit of the most parsimonious model for

each season was assessed using Bayesian P values

(Gelman et al. 1996, Morgan 2000). We used the

deviance as the goodness of fit criteria. At each iteration

of the Markov chain Monte Carlo (MCMC), we

calculated the deviance of the observed data (D) and

the deviance of data simulated from the model given the

current parameter values (D*). The Bayesian P value

measures the proportion of times D* is greater than D. If

the model fits the observed data well, then there should

be little difference between fits of the observed and

simulated data and the P value should be around 0.5.

The magnitude of the P values obtained from the most

parsimonious model for each season were all close to

0.5, suggesting that they fit the data well (Table 1).

Maps.—Smoothing of the grid cell bycatch rates by

the best fitting spatial model is illustrated in Fig. 3 for

Season 1. The amount of smoothing is related to fishing

effort; grid cells with low fishing effort typically had the

most smoothing, while estimates in cells of high fishing

effort remained similar to their corresponding raw rates.

FIG. 2. Mantel correlogram of predicted random effects Ui

from a single-taxon model with no spatial random effects for (a)
Season 1, (b) Season 2, and (c) Season 4. Solid circles represent
autocorrelation coefficients that are significantly different from
zero.

FIG. 1. Data used in analysis. (a) Distribution of marine
mammal bycatch in 0.58 3 0.58 square grid cells from 1990 to
2004 for all seasons combined. (b) Comparison of raw bycatch
rate and fishing effort in each grid cell using data collected in
Season 1. Raw bycatch rate ¼ ratio of observed bycatch to
fishing effort; fishing effort¼ net length (meters) multiplied by
soak time (hours). Only Season 1 is shown for illustration
purposes; Seasons 2 and 4 showed similar patterns.
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The standard error of the model-estimated rates was

generally lower than the raw rate standard error in a

grid cell (Fig. 4), illustrating the reduction in variance

that is achieved by smoothing bycatch rate estimates.

This was most pronounced in grid cells with large raw

rate standard errors (i.e., in those cells with low effort).

Grid cells with a raw rate of zero were excluded from

Fig. 4 since the corresponding standard error of zero

would not necessarily be representative of the random

variation in the rate.

Figs. 5a, b, 6a, b, and 7a, b show the raw rates and

smoothed rates estimated by the best fit model for

Seasons 1, 2, and 4, respectively. There were more areas

with high bycatch rates (.0.0004) in Seasons 1 and 2

than in Season 4. The highest rates appear to be in the

northern and southern regions in Season 1 and the

northern region for Season 2. Bycatch rates for Season 4

were highly localized in these areas. The differences in

magnitude between the standard errors of the raw and

smoothed rates are shown in Figs. 5c, 6c, and 7c for

Seasons 1, 2, and 4, respectively. Grid cells with a raw

rate of zero were excluded from the comparison for

reasons outlined in the paragraph above. The standard

errors associated with the smoothed rates were generally

smaller than the standard errors of the raw rates, with

the difference in magnitude as large as 0.005 for Season

FIG. 3. Comparison of raw and smoothed bycatch rates estimated by the best-fitting single-taxon model in Season 1 (see Table
1 for model). The solid line shows the pattern expected if rates were equal.

TABLE 1. Summary statistics of the single-taxon and cross-taxa models.

Season

Single-taxon model Cross-taxa model

Random
effects w

Bayesian
P value DIC P(q̂ . 0)

Median estimate
of q̂ (95% CI)

1 S 227.097
S þ U 0.31 0.529 218.085 0.726 0.384 (�0.709, 0.893)

2 S 245.530
S þ U 0.58 0.531 242.507 0.368 –0.210 (�0.864, 0.785)

3 S 0.509 161.674 0.823 0.390 (�0.416, 0.900)
S þ U 0.85 162.047

Notes: Shown for each season are the single-taxon models fit and their corresponding deviance
information criterion (DIC), w for the models with both spatial and nonspatial random effects [w¼
vars/(varsþr2

u)], and a Bayesian P value for the best-fitting models (shown in bold). Estimates of the
conditional correlation between seabird and marine mammal bycatch rates in a grid cell (q̂)
estimated by the cross-taxa model are also given (posterior median with 95% credible interval and
the probability that q̂ is greater than zero). Season 3 was excluded from the analysis because fishing
effort in Season 3 was restricted to a much smaller spatial region. S ¼ spatial random effect, U¼
nonspatial random effect.
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1, and 0.004 for Seasons 2 and 4. In the few cells in

which the raw rate standard error was smaller, the

difference in magnitude was much smaller, never

exceeding 0.00004 for Season 1, 0.000022 for Season 2,

and 0.0001 for Season 4. This occurred in cells with the

some of the highest effort. Since raw rates are more

precise in areas of higher effort (Eq. 2), gains in

smoothing rates in these cells are negligible. Neverthe-

less, the goal was to estimate the spatial pattern of

bycatch rates across the whole region and the average

relative improvement in standard error was 0.000415,

0.00028, and 0.00026 for Seasons 1, 2, and 4, respec-

tively.

Using the model-generated smoothed bycatch rates,

we also generated maps to consider the probabilities that

the estimated grid cell bycatch rates exceed a particular

threshold. We arbitrarily chose 0.0005 marine mammals

per 1000 units of effort. There were many areas in which

bycatch rates were higher than the threshold selected

(Fig. 8). In Season 1, these cells were located in the

northern and southern regions of the map. Cells that

exceeded the threshold were more scattered in the region

in Season 2, while the areas of concern are clustered in

the northern area of the map in Season 4.

Cross-taxa analysis

There was positive correlation between bycatch rates

of seabirds and marine mammals within grid cells in

Seasons 1 and 4 (Table 1). The probability of positive

correlation was highest in Season 4 (0.823) indicating

there was a similar spatial pattern of bycatch rates

between seabirds and marine mammals. A comparison

of the mapped smoothed seabird bycatch rates com-

pared with the smoothed marine mammal rates (Fig. 9)

illustrates the shared spatial pattern in the northern

region of the fished area. Rates were different in the

southern region, showing high rates for seabirds and low

rates for marine mammals. In contrast, the spatial

pattern of bycatch rates between marine mammals and

seabirds showed similar high bycatch rates in the

southern region during Season 1, while rates in the

northern region were low for seabirds and high for

marine mammals. The probability of positive correla-

tion was weak in Season 2 (0.368), giving no evidence of

a similar spatial pattern of risk between the two taxa.

DISCUSSION

Our results demonstrated that the Bayesian hierar-

chical spatial model used here addressed inherent

limitations of bycatch data and was instrumental in

reducing the standard errors in bycatch rates compared

with using raw bycatch rates. By applying this method to

data from the U.S. Atlantic gill net fishery, we

demonstrated a novel approach to mapping bycatch

rates that may be used to indicate areas of high bycatch

rates, to generate hypotheses about relationships be-

tween bycatch and oceanographic variables, and to

conduct cross-taxa analyses. Such mapping tools give a

more comprehensive understanding of spatial patterns

of bycatch and provide a tool by which management

decisions, such as time-area closures, can be evaluated

relative to model-based estimates of bycatch rates that

account for variation in fishing effort.

The results of this application illustrate the common

problems associated with mapping raw rates and the

advantages associated with using Bayesian hierarchical

spatial model estimates. Specifically, our Bayesian

spatial model addressed the spatial variation in fishing

effort and the rarity of bycatch events, and consequently

increased the stability of bycatch estimates. The analysis

addresses the issue of whether a very high or low raw

bycatch rate is an artifact of an area having very low

observed fishing effort or whether it reflects the true

variability in bycatch rates across a region. As was

illustrated by a comparison of raw rates and fishing

effort across grid cells, high raw rates were consistently

found in areas of low fishing effort (Fig. 1b). This

FIG. 4. Comparison of standard errors of raw and
smoothed bycatch rates for (a) Season 1 and (b) Season 2.
The solid line shows the pattern expected if standard errors
were equal.
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highlights the extremely high variability associated with

raw rates when low effort is observed and also points to

the importance of having high observer coverage and

observed effort as higher observer effort is clearly

needed to reduce the variability inherent in raw rates.

Furthermore, observer programs should be emphasized

in low effort regions in contrast to high effort regions in

order to reduce variance in the overall estimates.

Because areas with low observed fishing effort may

yield high bycatch rates, it is possible that management

decisions based solely on raw rates may be misleading.

Given our findings, there is evidence to suggest that raw

bycatch rates need to be adjusted to ensure that they

accurately reflect spatial bycatch variability.

A number of other distributions are available to

model bycatch data that is over-dispersed relative to the

Poisson distribution, such as the zero-inflated Poisson

(ZIP) and zero-inflated negative binomial (e.g., Minami

et al. 2006). Ver Hoef and Jansen (2007) assumed a zero-

inflated Poisson distribution for haul-out counts of

harbor seals on glacial ice and modeled spatial patterns

using a conditional autoregressive model. We presented

an alternative approach for dealing with extra-Poisson

variation. The Bayesian hierarchical model described

here, which has both a spatial and nonspatial compo-

nent, can account for the challenges of spatially

structured correlation and unstructured overdispersion

of bycatch events. This model assumes that there are two

FIG. 5. Marine mammal bycatch rates (number of marine mammals caught per 1000 units of effort) in Season 1: (a) raw
bycatch rates, (b) smoothed bycatch rates estimated from best-fit single-taxon model, and (c) the difference in magnitude of the raw
rate SEs to the smoothed rate SEs. Positive values indicate areas in which the raw rate SE is larger. Cells with a raw bycatch rate of
zero were excluded from the comparison and left blank in the map (see Results: Single-taxon analysis: Maps)
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forms of extra variation beyond that governed by the

Poisson distribution. First, there is nonspatial over-

dispersion arising from having many grid cells with zero

counts but also a few with large values (Fig. 1a). The

other form of variation is induced by spatial correlation

between neighboring grid cells. The ability of the model

to distinguish between the two forms of extra-Poisson

variation simultaneously allows the degree to which

bycatch rates show some form of geographical pattern-

ing and the similarity in this pattern between different

taxa to be elucidated. This model rests on the

assumption that a spatial signal is present in the data

and we illustrated the presence spatial correlation prior

to fitting the model. If absent, the random effects Ui and

Si are unidentifiable.

Bayesian hierarchical spatial models offer improve-

ments in terms of stability of bycatch rate estimates. The

variance reduction of estimates is achieved through

borrowing information from neighboring cells. The

smoothing procedure results in a trade-off between bias

and variance reduction of the bycatch estimates.

However, Best et al. (2005) compared the main types of

Bayesian hierarchical spatial models available for

mapping rates of disease outbreak and found the Besag

et al. (1991) model used in this paper performed well. The

comparison of estimated standard errors for raw rates

and model-based rates illustrate the extent of variance

reduction that is achieved using the Besag model here.

The Besag model is also flexible in terms of how the

spatial areas are defined, which may be a regular or

irregular grid (see, for example, Thogmartin et al. 2004).

We gave equal weights to all neighbors in the calculation

of the spatial random effects. However, non-equal

weights can be easily specified. For example, weighting

FIG. 6. Marine mammal bycatch rates in Season 2: (a) raw bycatch rates, (b) smoothed bycatch rates estimated from best-fit
single-taxon model, and (c) the difference in magnitude of the raw rate SEs to the smoothed rate SEs. Positive values indicate areas
in which the raw rate SE is larger. Cells with a raw bycatch rate of zero were excluded from the comparison and left blank in the
map (see Results: Single-taxon analysis: Maps).
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neighbors by distance between area centroids would be

useful if the grid cells were irregular. Thus, these spatial

models have the potential for a much broader usage as

they can be adjusted for the spatial information at hand.

An additional advantage of smoothing bycatch rates is

that a more realistic estimate of standard error can be

obtained in those areas that had a raw rate of zero.

The Besag model has limitations. Since we defined

neighbors for a grid cell as all those sharing a common

boundary to that cell, there must be at least one bycatch

event in an isolated group of grid cells. A problem

encountered with this data set was that due to low

observer coverage, rarity of a bycatch event for large

vertebrates, and patchiness of effort, groups of cells

arose that all contained zero counts and could not be

included in the model. Fitting the model to data from a

smaller time scale (e.g., a single year or an individual

species) might magnify this problem. To investigate

temporal variability, future analyses using this method

could instead compare spatial models fit to data from a

smaller number of years than the 15 years we used in this

study. Alternatively, if we assume the spatial pattern of

bycatch remains constant but overall rate fluctuates

annually, then a year random effect could be included in

the model to capture the year-to-year variability. There

are many examples of Bayesian spatiotemporal models

FIG. 7. Marine mammal bycatch rates in Season 4: (a) raw bycatch rates, (b) smoothed bycatch rates estimated from best-fit
single-taxon model, and (c) the difference in magnitude of the raw rate SEs to the smoothed rate SEs. Positive values indicate areas
in which the raw rate standard error is larger. Cells with a raw bycatch rate of zero were excluded from the comparison and left
blank in the map (see Results: Single-taxon analysis: Maps).
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fitted to area-referenced data (e.g., Waller et al. 1997,

Wikle et al. 1998, Ver Hoef and Jansen 2007). Ver Hoef

and Jansen (2007) included a temporal autoregressive

model together with a spatial conditional autoregressive

model as random effects in a ZIP model. They chose a

spatial domain of neighbors for each cell so that the

problem of isolated cells with zero counts was avoided.

The extent of spatial correlation in our data was not

much greater than the width of a grid cell, and therefore

expanding the spatial domain of neighbors for a cell

beyond those that share a common boundary was not

justified in our study.

There are many smoothing procedures available for

data referenced by spatial areas (such as presented here)

or point locations. For example, Best et al. (2005)

consider areal data and compare several Bayesian

hierarchical models used to map disease risk. If bycatch

were referenced using point locations, then kriging

procedures specifically for Poisson or binomially dis-

tributed data may be used (Diggle et al. 1998). These

smoothing procedures are also likely to be applicable to

bycatch data. However, as the purpose of this paper was

to compare the estimated spatial patterns of bycatch

rates in a whole region using raw rates vs. those obtained

using smoothing models, we focused on a single relevant

smoothing technique.

Bayesian hierarchical spatial modeling is an effective

and useful tool for exploring geographical distributions

of bycatch rates. It has several advantages over

traditional mapping of raw rates as well as the added

utility of generating maps of bycatch probabilities and

facilitating comparison of bycatch patterns across taxa.

As illustrated with the U.S. gill net fishery data, one

practical application of this spatial modeling approach is

the ability to produce maps that highlight the probabil-

ity that a bycatch rate for a grid cell exceeds some

threshold value. These threshold values can reflect

management goals relative to the population size or

status of a species. Management agencies could then use

such maps to identify the most critical management

FIG. 8. Probability that the smoothed bycatch rates of marine mammals are .0.0005 marine mammals per 1000 units of effort
in (a) Season 1, (b) Season 2, and (c) Season 4 (see Results: Single-taxon analysis: Maps).
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areas. In addition, agencies may be able to use these

types of maps post hoc in evaluating time-area closures.

For example, the area of high probability of bycatch

highlighted in Season 4 in Fig. 8 almost directly overlaps

with the midcoast closure that was implemented to

reduce harbor porpoise bycatch during that season (U.S.

Department of Commerce 1998). Murray et al. (2000)

reported that an earlier, smaller closure was too small to

have the desired reduction of bycatch. Had a Bayesian

hierarchical mapping exercise been conducted a priori,

this area could have been identified more precisely. Our

post hoc analysis indicates that the current midcoast

closure is placed correctly. Further examples of how

probability statements generated using Bayesian meth-

ods can better communicate results to managers are

given in Wade (2000).

One cautionary note regarding the specific example

used in our analyses is that U.S. observer data are

collected to monitor fishing effort, catch of target

species, and bycatch of protected species. Because these

data are not collected to expressly understand the spatial

distribution of bycatch, a statistical method that

increases the stability of the estimates is critical if

management decisions are to be based upon this

information.

Recent attempts to manage on an ecosystem-based

approach have highlighted the need to conduct multi-

taxa analyses and management (Norris et al. 2002). For

example, management for one taxon could have

detrimental effects on another taxon (Norris et al.

2002, Baum et al. 2003). Here, we demonstrate how this

type of model can highlight similarities in spatial

patterns of bycatch across taxa. For example, we found

evidence of a seasonal positive correlation between the

bycatch rates of all marine mammals and seabirds,

indicating that the bycatch distribution of both taxa are

influenced by some shared spatially structured covariate

(i.e., an oceanographic variable) during this season.

Such positive correlations may be useful in identifying

critical bycatch areas where multiple species across taxa

are incidentally captured. A joint mapping analysis can

also improve estimates by combining information from

multiple taxa across neighboring areas (Best et al. 2005).

Finally, the spatial information obtained from the

methods outlined here could be used to improve the

bycatch rate estimates required in a flexible optimization

tool (Leslie et al. 2003). Typically, resource agencies

manage for a single species; however, recent attempts to

incorporate spatial information on bycatch of multiple

taxa have used such a tool to site marine reserves

(D’Agrosa 2004). Although an analysis of the ecological

mechanisms causing the bycatch patterns was beyond

the scope of this paper, future research could integrate

model results with the distribution of oceanographic

correlates or include the oceanographic covariates into

the bycatch model.

Bayesian hierarchical models are an important tool

for understanding the true spatial variation in bycatch

rates. The advantages of modeling bycatch events to

estimate bycatch rates compared with using raw rates

are apparent upon comparison of their estimates and

corresponding standard errors. This approach can

generate alternative summaries of bycatch, such as

threshold probabilities, and can be used to conduct

multitaxa analyses, both of which have considerable

promise for bycatch management and mitigation. Given

the success in applying this approach to marine

mammals and seabirds bycaught in the U.S. gill net

fishery in the northwest Atlantic, these methods have

potential for application to other fisheries, and other

taxa of conservation concern.
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