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ABSTRACT 21 

 22 

Intrinsic population growth rate (rmax) is an important parameter for many ecological 23 

applications, such as population risk assessment and harvest management. However, rmax can be 24 

a difficult parameter to estimate, particularly for long-lived species, for which appropriate life 25 

table data or abundance time-series are typically not obtainable.  We describe a method for 26 

improving estimates of rmax for long-lived species by integrating life-history theory (allometric 27 

models) and population-specific demographic data (life table models).  Broad allometric 28 

relationships, such as those between life history traits and body size, have long been recognized 29 

by ecologists.  These relationships are useful for deriving theoretical expectations for rmax, but 30 

rmax for real populations may vary from simple allometric estimators for ‘archetypical’ species of 31 

a given taxa or body mass. Meanwhile, life table approaches can provide population-specific 32 

estimates of rmax from empirical data but these may have poor precision from imprecise and 33 

missing vital rate parameter estimates.   Our method borrows strength from both approaches to 34 

provide estimates that are consistent with both life-history theory and population-specific 35 

empirical data, and are likely to be more robust than estimates provided by either method alone. 36 

Our method uses an allometric constant: the product of rmax and the associated generation time 37 

for a stable-age population growing at this rate.  We conducted a meta-analysis to estimate the 38 

mean and variance of this allometric constant across well-studied populations from three 39 

vertebrate taxa (birds, mammals, and elasmobranchs) and found the mean was approximately 1 40 

for each taxon.    We used these as informative Bayesian priors that determine how much to 41 

‘shrink’ imprecise vital rate estimates for a data-limited population toward the allometric 42 

expectation.  The approach ultimately provides estimates of rmax (and other vital rates) that 43 
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reflect a balance of information from the individual studied population, theoretical expectation, 44 

and meta-analysis of other populations.  We applied the method specifically to an archetypical 45 

petrel (representing the genus Procellaria) and to white sharks (Carcharodon carcharias) in the 46 

context of estimating sustainable fishery bycatch limits.   47 

 48 

Keywords: Population dynamics; integrated population models; demography; intrinsic growth 49 

rate  50 
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INTRODUCTION 51 

 52 

The intrinsic rate of increase is the maximum potential exponential growth rate a population can 53 

achieve under optimal resource conditions in its environment (Caughley 1977).  It is a key 54 

parameter for understanding life-history evolution and population dynamics, and is important in 55 

many conservation applications.  Intrinsic growth and related terms have been variously defined 56 

in the literature (e.g., rmax, rm, rintrinsic, ; Caughley 1977, Niel and Lebreton 2005, Gedamke et al. 57 

2007, Fagan et al. 2010).  For practical application purposes, our interest is the maximum growth 58 

rate that would be possible for a real-world, low-density population (e.g., a small founding 59 

group, or one in early stages of recovery from severe depletion) with a stable age distribution in a 60 

broadly favourable natural environment, which we refer to as rmax.  In wildlife and fisheries 61 

management, rmax may be used for projecting population recovery times, conducting population 62 

viability analyses, or estimating exploitation or removal rates that correspond to management 63 

targets or thresholds.  For example, many species of marine megafauna are impacted by 64 

incidental catch (or bycatch) from fisheries (Lewison et al. 2004, Moore et al. 2013).  For these 65 

data-poor species, the intrinsic growth rate is a fundamental parameter for estimating incidental 66 

fishery-catch limits (Moore et al. 2013) and conducting certain types of Ecological Risk 67 

Assessments (ERAs) based on the use of Productivity and Susceptibility Analyses (PSAs) 68 

(Cortés et al. 2010, Hobday et al. 2011).   69 

 70 

Unfortunately, intrinsic growth rates are difficult to estimate for many species or populations, 71 

particularly for many long-lived data-limited species in need of active management.  For 72 

example, under the U.S. Marine Mammal Protection Act, bycatch mortality to a marine mammal 73 
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population must be below an estimate of Potential Biological Removal (PBR) or else 74 

management procedures to reduce bycatch must be initiated.  PBR is calculated as a function of 75 

population abundance and intrinsic growth rate estimates (Wade 1998, Taylor et al. 2000).  The 76 

latter is unknown for most populations, so default values are typically used (0.04 for cetaceans, 77 

0.12 for pinnipeds), but the appropriateness of these defaults has not been fully evaluated.  78 

Obtaining species- or population-specific estimates of the intrinsic growth rate would therefore 79 

improve the PBR management scheme.  80 

 81 

Intrinsic growth rates may be estimated directly or through model-based approaches.  Direct 82 

estimation requires fairly long time series (relative to generation time) of abundance estimates 83 

for fast-growing (e.g., recovering) populations whose growth rates are not yet limited by 84 

resource availability and which have age distributions at least close to the stable age distribution.  85 

Where these circumstances exist, regression methods for estimating average growth rate as a 86 

function of time or population abundance are straightforward to implement (e.g., Eberhardt and 87 

Simmons 1992, de Valpine and Hastings 2002, Morris and Doak 2002, Sibly et al. 2005, Clark et 88 

al. 2010).  However, such data are not usually available, particularly for certain types of species, 89 

e.g. the long-lived and late-maturing marine species that motivate our research, whose age as 90 

first reproduction can be >10 years and lifespans are decades.  Such species are particularly 91 

sensitive to human impacts on survival rates (Heppell et al. 1999, 2005).  For these species, 92 

direct estimates of intrinsic growth generally require decades of data, usually from well-93 

monitored populations recovering from intensive human exploitation after effective conservation 94 

measures have been put in place (e.g., Best 1993, Balazs and Chaloupka 2004).  Few large 95 

marine vertebrate populations fit these criteria.  Therefore, despite any limitations from 96 
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simplifying assumptions (e.g. simplified biology, ignoring density-dependence or senescence), 97 

model-based approaches to estimating rmax are more common and more practical, at least for 98 

these types of species.   99 

 100 

In the wildlife demography literature, there are two general classes of model-based methods for 101 

estimating rmax or max = exp(rmax) for most populations of long-lived species: analysis of life 102 

table methods, and life-history theory and allometric scaling relationships.  For purposes of the 103 

current analysis, we refer to life table methods in the sense of calculating rmax from estimates of 104 

annual survival and reproductive rates (in presumably non-limiting resource conditions) using 105 

matrix algebra methods (e.g., eigenanalysis or solving the characteristic equation; Caswell 2001) 106 

or solving the discrete form of the Euler-Lotka equation (see Skalski et al. 2008, Fagan et al. 107 

2010 for good methodological overviews).  Allometric methods use empirically verified 108 

relationships across species within broad taxonomic groups between demographic rates (e.g., 109 

survival rates, lifespan, age at maturity) and organismal characteristics (namely body size or 110 

metabolic rate) to make inference about population growth rate from relatively few input 111 

parameters (e.g., Hennemann III 1983, Savage et al. 2004a, Savage et al. 2004b, Niel and 112 

Lebreton 2005, Hone et al. 2010).  Both approaches have been used to assess risk for long-lived 113 

populations.  For example, PSAs for sharks have used estimates of max  derived from matrix 114 

models (Cortés 2002, Simpfendorfer et al. 2008, Cortés et al. 2010), while allometric models 115 

have been used in developing estimates of Potential Biological Removal (PBR) for birds (Niel 116 

and Lebreton 2005, Dillingham and Fletcher 2008, Dillingham 2010, Dillingham and Fletcher 117 

2011, Richard and Abraham 2013).   118 

 119 
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The two types of model-based approaches have individual advantages but also individual 120 

shortcomings.  The advantage of using life table methods is that estimates of rmax account for age 121 

structured demographic rates and these are empirically informed for the population of interest.  122 

However, it is difficult to know whether field measures of demographic rates correspond to those 123 

that would be observed for a population growing at rmax (Gedamke et al. 2007, Fagan et al. 124 

2010).  Parameterizing a matrix model (or Euler-Lotka equation) may also be hampered by data 125 

limitations (error in parameter estimates) and structural uncertainties about the life history 126 

schedule (i.e., matrix dimensionality and how many parameters to include) (Heppell et al. 2000, 127 

Lynch and Fagan 2009).   128 

 129 

The advantage of using allometric methods is that these require fewer variables than life table or 130 

matrix model approaches and fewer data from the particular study population.  Rather, rmax 131 

estimates are informed by well-established evolutionary relationships between, for example, 132 

body size and various demographic rates.  However, these methods are equally sensitive to input 133 

parameter uncertainty and only provide theoretical or expected value estimates of population 134 

growth (e.g., given an estimate of body size or age at maturity).  As a result, an allometric 135 

approach can fail to fully account for population- or species-level variation in demographic 136 

complexity given that individual populations are expected to deviate from the ‘archetype’ 137 

(Savage et al. 2006, Ginzburg et al. 2010).  For example, Hone et al. (2010) found for mammals 138 

a strong relationship between field estimates of population growth rates and age at maturity, but 139 

growth rates for individual species could not be predicted precisely from the relationship.  140 

Moreover, there remains uncertainty in allometric scaling relationships (Duncan et al. 2007) due 141 
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at least in part to methodological difficulties or inconsistencies in empirically testing the 142 

underlying theories (Fagan et al. 2010). 143 

 144 

We present a general approach that draws on the strengths of both types of model-based methods 145 

to provide estimates of rmax that are consistent with both allometric theory and population-146 

specific empirical data, and that may therefore be more robust than estimates provided by either 147 

method alone.  148 

 149 

METHODS 150 

 151 

Background 152 

 153 

For long-lived species in particular, estimates of rmax from either life table or allometric methods 154 

are strongly influenced by estimates of maximum adult survival. However, the bias in rmax (from 155 

error in survival estimates) occurs in opposite directions for the two types of methods, a fact that 156 

we exploit in our model development.  For matrix models, higher survival values lead to higher 157 

rmax values when other demographic parameters remain constant.  Across species, however, 158 

many parameters are correlated, and allometric models show that species with higher survival 159 

rates generally have lower rmax values because of the evolutionary trade-off between survival (s) 160 

and reproductive output (Williams 1966, Charnov 2005).  For populations that are impacted by 161 

anthropogenic mortality (e.g. bycatch in fisheries, hunting), use of empirical estimates of s will 162 

either underestimate rmax (e.g. matrix models) or overestimate rmax (e.g. allometric models) 163 

(Dillingham and Fletcher 2008).  The differences between the two methods can be striking, 164 
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highlighting the potential risk from using empirical estimates of adult survival to estimate rmax 165 

using either method alone.  For an example petrel described in Table 1, treating an empirical 166 

estimate of survival which incorporates substantial bycatch mortality (s = 0.89; Barbraud et al. 167 

2008) as if it represented maximum survival would yield estimates of rmax = 0.088 using a 168 

particular allometric model (DIM; Niel and Lebreton 2005) and rmax = 0.006 using a matrix 169 

model.  For some species (e.g. sharks) little is known about adult survival, and either method 170 

would perform poorly.  More generally, when there is parameter uncertainty each method can 171 

produce estimates of rmax discordant with the other: e.g. allometric estimates of rmax that require 172 

breeding success rates > 1 or similar impossibilities, or matrix model estimates of rmax that are 173 

strongly inconsistent with ecological allometric theory.  The approach we describe in this paper 174 

is to analytically identify combinations of demographic parameters that produce matrix model 175 

estimates that are also consistent with observed allometric relationships. 176 

 177 

The particular allometric relationship we use is the approximate constancy (invariance) of the 178 

product of rmax and the associated generation length (in years) for a stable-age population 179 

growing at rmax.  This generation length has previously been termed the "optimal" generation 180 

length as generation time depends on conditions but rmax occurs when conditions are optimal 181 

(Niel and Lebreton 2005); e.g. high survival combined with relatively early age at first 182 

reproduction as might occur in resource-replete conditions for a low-density population.  183 

Indicative of the general nature of this relationship, we denote optimal generation length using a 184 

generic symbol (Topt) not tied to any specific calculation; however, our actual calculations were 185 

based on optimal mean generation length ( op 1 i ii
T il f




 , where li is the survival probability 186 

from birth to age i and fi is the annual fecundity at age i; Leslie 1966, Niel and Lebreton 2005) as 187 
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it is relatively insensitive to senescence (Niel and Lebreton 2005) which is difficult to model for 188 

the data-poor populations included in this study.  The approximate constancy of rmaxTopt is based 189 

on multiplying distinct allometric relationships for each variable. Allometric relationships are of 190 

the form xp aM , where M is body mass, p is some characteristic, and a and x are constants; 191 

these describe broad trends observed across species.  Quarter-power exponents are common in 192 

allometry (Savage et al. 2004a), and for rmax and Topt the exponents are near -0.25 and 0.25, 193 

respectively. Multiplying the two allometric relationships leads to the expected relationship 194 

previously described (Lebreton 1981, Fowler 1988, Charnov 1993, Niel and Lebreton 2005): 195 

 max opt rTr T a  (1) 196 

where arT = araT 
and ar, aT are the constants in the allometric equations for intrinsic growth rate 197 

and generation time, respectively.  The constancy of rTa  is assumed to hold within homogenous 198 

taxonomic groups independent of body mass, but may vary between taxa.  For example, Niel and 199 

Lebreton (2005) demonstrated that max opt 1r T   for 13 well-studied bird species (from diverse taxa 200 

and spanning a large range in body sizes) whose populations were assumed to be growing under 201 

non-limiting resource conditions.   202 

 203 

Niel and Lebreton (2005) and Dillingham (2010) combined Eq. 1 with specific population 204 

models that allow estimation of rmax with limited demographic data for archetypical populations.  205 

For example, Niel and Lebreton (2005) use a simple age-based matrix model where adult 206 

survival (s) and fecundity (f,  female offspring per female per year) are constant from the age at 207 

first reproduction (), referred to as the constant-fecundity model (Dillingham 2010).  For a 208 

matrix of this form, mean generation time (Leslie 1966) reduces to  T s s     (Niel and 209 
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Lebreton 2005) and, combined with the allometric model, provides the equation for the 210 

demographic invariant method (DIM) (Niel and Lebreton 2005, Dillingham 2010): 211 

   1

max opt max optexp /DIM DIM
rTa s s  

     
    (2) 212 

In this context,  should represent the age at first reproduction under non-limiting resource 213 

conditions.  If arT is known (e.g., for birds, arT ≈ 1; Niel and Lebreton 2005), then intrinsic 214 

growth can be calculated, at least approximately, with minimal demographic data using Eq. 2.  215 

That is, due to the structure of the matrix model and the requirement that rmaxTopt = 1 (for birds), 216 

the only demographic parameters required to calculate rmax or max are  and s; all other 217 

parameters are implied by the model.  Dillingham (2010) derived similar equations for a more 218 

biologically-realistic model (termed the varying-fecundity model) that allows fecundity to 219 

increase over a number of age classes but requires some additional information on fecundity.  220 

Dillingham (2010) also noted that the varying-fecundity model can be approximated by the 221 

constant-fecundity model if  represents a typical (e.g. near the mean or median) age at first 222 

reproduction rather than the earliest age that some animals reproduce. 223 

 224 

Our analysis has two parts.  First, we develop two new methods to estimate rmax by integrating 225 

matrix and allometric (i.e. rmaxTopt invariance) models.  Second, we use empirical data to 226 

examine the constancy of rmaxTopt for mammals and sharks in an effort to evaluate the taxonomic 227 

generality of the relationship that was demonstrated for birds by Niel and Lebreton (2005); the 228 

outputs of this meta-analysis are needed to apply the estimation methods to real populations.   229 

 230 

The first rmax estimation method, which we term the rT-exact method for an rT-ideal population, 231 

describes the population growth of an archetypical population.  This method assumes the 232 
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population follows the allometric model exactly. We show how straightforward computational 233 

methods allow us to generalise the approaches of Niel and Lebreton (2005) and Dillingham 234 

(2010) to allow other matrix population models to be used, estimate the expected value for rmax 235 

even when a point estimate of optimal (i.e. maximum) adult survival (sopt) is unavailable, and 236 

incorporate all available demographic information to inform results.  The second method, termed 237 

the rT-adjusted method, incorporates estimates of process variance (population-level variation) 238 

in the rmaxTopt relationship, appropriate for describing individual rather than archetypical 239 

populations.  For this method, we use allometric relationships to improve the precision of matrix 240 

model results by adjusting estimates towards rT-exact estimates and generating more realistic 241 

estimates of uncertainty in rmax, but still allow individual populations to vary from the allometric 242 

expectation.  To demonstrate the applicability and utility of these two new methods, we include a 243 

demonstration application of our approach to two case studies regarding management and 244 

population viability of an archetypical pelagic seabird (petrels of the genus Procellaria) and 245 

white sharks (Carcharodon carcharias). 246 

 247 

Model Development 248 

 249 

The two new rmax estimation methods rely on simple variants of Eq. 1.  The first method, the rT-250 

exact method, describes rmax for an archetypical, or rT-ideal, population, where Eq. 1 is exact.  251 

Thus for rT-ideal populations, 252 

rmaxTopt = arT      (3) 253 

While the rT-exact method is useful to describe growth rates for archetypical populations, slight 254 

departures from this relationship are expected for individual populations.  To allow individual 255 
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populations to vary from Eq. 1, we can assume that the variability is normally distributed and 256 

model the product of intrinsic growth and optimal generation time as  257 

 max opt ~ ,rT rTr T N a        (4) 258 

where arT is the allometric constant and rT is the population-level standard deviation, which 259 

describes the amount of true variation across populations around the theoretical prediction for 260 

rmaxTopt.  While Eq. 4 has advantages of simplicity, it does theoretically allow rmaxTopt < 0.  For 261 

combinations of arT and rT where negative values are a concern (e.g. arT is less than 262 

approximately 2rT from 0), a log-normal or truncated normal distribution could be used in place 263 

of Eq. 4.   264 

 265 

The rT-exact method 266 

The rT-exact method combines matrix models with Eq. 3 in order to predict rmax for an 267 

archetypical population.  Given demographic parameters representative of maximal population 268 

growth, matrix model (MM) estimates max
MMr  and opt

MMT  are calculated, e.g. using the Euler-Lotka 269 

equation and the equation for mean generation time (Dillingham 2010), along with their product 270 

max opt
MMr T .  If max opt

MMr T  equals arT, then the population is rT-ideal; otherwise, it is not.  Simply, 271 

the rT-exact method requires that the matrix model is fully concordant with the allometric model.   272 

 273 

Niel and Lebreton (2005) and Dillingham (2010) both presented special cases of the rT-exact 274 

method.  For illustration, assume a population that follows the constant-fecundity model where 275 

sopt is the only unknown parameter.  For both DIM and matrix models, rmax is then simply a 276 

function of sopt.  The relationship between model estimates of sopt and rmax for DIM (i.e. Eq. 2) 277 

and the matrix model for this illustrative population is shown in Fig. 1a.  As sopt increases, rmax 278 
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increases for the matrix model (dashed line), but decreases for DIM (solid line).  Because sopt is 279 

unknown, neither method can calculate rmax exactly.  However, the point in Fig. 1a where these 280 

lines intersect is where the matrix and DIM models agree, and is the solution for sopt and rmax 281 

from the rT-exact method.  In short, this new approach finds the values of sopt and rmax (using 282 

numerical methods) where rmaxTopt from the matrix model equals the allometric constant arT.   283 

 284 

A more generic computational approach for rT-ideal populations is to (1) put prior distributions 285 

on all parameters, (2) simulate a large number of matrix models, and (3) then calculate the 286 

product of growth and generation time ( max opt
MMr T ) for each; and finally, (4) keep those iterations 287 

that satisfy the allometric theory constraint of max opt rT
MMr T a  (within an allowed numerical 288 

tolerance, i.e. 
max opt

MM
rTr T a    for some small ) and form the posterior distribution for 289 

rmaxTopt.  For data-rich populations, there may be relatively little uncertainty in max opt
MMr T , while 290 

for data-poor populations the uncertainty would be large.  Thus, uncertainty about rmax will 291 

reflect uncertainty in demographic rates but parameters will be constrained by asserting that the 292 

population must be rT-ideal. For the illustrative population shown in Fig. 1, if there was 293 

uncertainty in parameters in addition to sopt, matrix model methods would produce a range of 294 

possible growth rates for each value of s.  Equation 3 would be satisfied for all parameter sets 295 

that produce combinations of , sopt, and max that also satisfy Eq. 2.  Figure 1b shows 296 

realisations of 1000 simulated matrix models that are rT-exact (within  = 0.05).  297 

 298 

The rT-adjusted method 299 
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The rT-adjusted method estimates population growth for individual populations by combining 300 

matrix models with Eq. 4.  This method relaxes the rT-ideal constraint and only assumes that 301 

rmaxTopt is near arT, allowing for population-level variation from the ideal.  The first three steps of 302 

the computational approach are the same as for the rT-exact method (i.e. simulating and 303 

calculating values for the matrix models).  For the rT-adjusted method, step (4) is to simulate 304 

max opt
Ar T  from the allometric model (A) (e.g. Eq. 4).  Equation 4 is appropriate for the allometric 305 

model as long as max opt
Ar T > 0 for the vast majority of iterations; otherwise, a log-normal or 306 

truncated-normal model could be used instead.  In step (5), those iterations where max opt
MMr T is 307 

near max opt
Ar T   (i.e. 

max opt max opt
MM Ar T r T   ) are kept and others discarded.  For the constant-308 

fecundity population described in Fig. 1, matrix model estimates that fall near Eq. 2 are kept with 309 

increasing probability (Fig. 1c), but no longer must lie on Eq. 2.  In Supplement 1, 310 

implementation of the rT-exact and rT-adjusted methods is described for the illustrative 311 

population in Fig. 1.   312 

 313 

The tolerance, ,  sets the allowable numerical error, where smaller values equate to higher 314 

precision but increased computational time.  Based on 1rTa   for birds (Niel and Lebreton 315 

2005), 0.05   provides a reasonable balance between speed and precision (e.g. for a 316 

population with generation time opt 10T   years, this corresponds to error of 0.005  in rmax for 317 

any individual iteration, with overall error reduced by the total number of iterations) while 318 

0.01   is appropriate for high-precision applications or populations with lower generation 319 

times.  The resulting, integrated estimates (I) of intrinsic growth, generation time, and their 320 

product ( max
Ir , opt

IT , and max opt
Ir T ) are derived from posterior intervals of the simulation, while the 321 
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integrated distribution for maximum annual growth ( max
I ) is calculated by transforming 322 

quantiles of max
Ir .  As a diagnostic, we also examine the distributions of max opt

MMr T  and max opt
Ar T , 323 

where limited overlap could be used as a model diagnostic, potentially indicating flawed model 324 

assumptions, data errors, or an unusual population.   325 

 326 

Estimating allometric parameters for birds, mammals and sharks 327 

 328 

We gathered data for birds, mammals, and sharks to estimate allometric parameters for each 329 

group.  Niel and Lebreton (2005) noted that Eq. 1 could be re-written as330 

max optlog log log rTr T a   .  They therefore modelled the data as 331 

 max optE log log log rTr T a   and ran a regression to test the assumption of 1   . The 332 

authors then estimated arT  by back-transforming the intercept in a revised model with the slope 333 

forced to −1.  Equation 4 is a similar but simpler model and is a natural extension of Eq. 1.  334 

Further, it eliminates potentially difficult choices about which regression method to use (e.g. 335 

ordinary least squares (OLS), major axis, or standardised major axis, see Warton et al. (2006) 336 

and O'Connor et al. (2007) for discussion). However, the log-log regression provides an easy 337 

way to examine relationships not evident from Eq. 4.  For example, in an allometric analysis of 338 

basal metabolic rate and mass, Kolokotrones et al. (2010) were able to find previously 339 

undetected curvature and a body temperature effect by using regression methods within a log-log 340 

regression.   341 

 342 

We therefore modelled data using both the log-log regression and the simpler method based on 343 

Eq. 4.  The log-log regression was designed to examine general linearity and whether the slope 344 
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was near −1, and Eq. 4 was used to actually estimate arT and rT.  Since the first method was 345 

used for basic diagnostics only, rather than adjusting the degrees of freedom or otherwise 346 

modelling phylogenetic dependence, we simply note that the standard error of the slope from 347 

OLS estimates may be underestimated if the dependence is strong, but other values (e.g. the 348 

estimated slope and R2) are appropriate for estimating rmax conditional on Topt (O’Connor et al. 349 

2007).  We also note that the corresponding estimate of rT from Eq. 4 will include the intrinsic 350 

population-level variability (i.e. process error) that we are interested in, but also includes 351 

measurement error and possible sources of model-based bias.  Therefore, the actual population-352 

level variability is likely ˆrT .   353 

 354 

For birds, we used the data from Niel and Lebreton (2005).  For mammals, we used empirical 355 

rmax estimates from count data for fast-growing populations for 41 out of 64 species compiled by 356 

Duncan et al. (2007), including 10 orders of mammals and ranging in size from rodents and 357 

lagomorphs to elephants and baleen whales. Data for the other 23 species did not satisfy 358 

inclusion measures for our analysis (briefly, rmax < 2,  > 0.5, and s < 1 when calculated by the 359 

characteristic equation; see Appendix A for details).  We compiled female age at first 360 

reproduction and fecundity estimates from other published databases for the mammals (Ernest 361 

2003, Jones et al. 2009, Tacutu et al. 2013), with the merged data available in Supplement 2 for 362 

the 41 included species.  To calculate generation time, survival estimates are also required.  363 

However, age- or stage-specific survival estimates were not available, so we assumed a single 364 

annual survival rate through life and found this rate by solving the characteristic equation for s: 365 

1 0s fl
     , where  exp r   and l s  .  The simplifying assumption of a single 366 

survival rate is a suitable proxy for age-structured survivorship for purposes of estimating r and 367 
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allometric relationships (Lynch and Fagan 2009).    We then estimated optimal generation time 368 

as  optT s s     (assuming , s, were estimated for optimal or near-optimal conditions) 369 

using the mean generation length (Leslie 1966) and an assumption of constant fecundity from 370 

age at first reproduction (Niel and Lebreton 2005, Dillingham 2010), and performed a log-log 371 

analysis sensu Niel and Lebreton (2005) to estimate the regression slope and confirm it was close 372 

to −1.  We then used the simpler Eq. 4 to estimate the allometric parameters. 373 

 374 

For sharks, we used estimates of growth and generation time from matrix models presented by 375 

Cortés (2002).  Developing matrix models for sharks is challenging due to the lack of empirical 376 

survival estimates for this taxon.  In their place, Cortés (2002) used indirect estimators developed 377 

primarily using data for teleosts, whose application to elasmobranchs has not been empirically 378 

justified (Kenchington 2013).  Cortés (2002) combined several different estimators and used the 379 

differences between them as one approach to estimating uncertainty in survival.  Therefore, the 380 

estimates for sharks have greater measurement error and potential sources of bias than the 381 

estimates for birds or mammals.  While the values from Cortés (2002) may be broadly 382 

interpreted as estimates of intrinsic growth, we recognise their limitations.  For example, some 383 

estimates of intrinsic growth were < 0, and estimates of uncertainty were conditional on the 384 

assumed models for survival.  We thus analysed the data to look for general consistency with the 385 

log-log analysis and Eq. 4 and general similarities in parameter estimates between sharks, birds, 386 

and mammals.  Using only those populations where the estimate of max 0r   led to 32 of 41 387 

populations in Cortés (2002) for inclusion in the log-log analysis.  Because Cortés (2002) 388 

provided uncertainty estimates for population growth rates, we were able to perform an 389 
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additional analysis to estimate mean arT and the population-level variation in this parameter (rT) 390 

by adjusting for measurement error in rmax (see Appendix A for details).  391 

 392 

Case studies 393 

 394 

The rT-exact method for petrels 395 

Many petrel species (Family Procelliidae) are listed as threatened by the International Union for 396 

Conservation of Nature (IUCN) due to incidental capture (bycatch) in fishing gear (BirdLife 397 

International 2013).  Because of these impacts, empirical estimates of survival, where available, 398 

incorporate anthropogenic mortality and therefore do not represent potential maximum survival.  399 

For example, recent survival estimates for the white-chinned petrel (Procellaria aequinoctialis) 400 

are very low (<0.90) compared to similar, less impacted species (Barbraud et al. 2008).  One 401 

solution is to use survival estimates from congeneric species at lower risk from bycatch (e.g. 402 

Barbraud et al. 2009, Dillingham and Fletcher 2011) to estimate rmax or max, and recognise that 403 

the estimates may be biased as a result or treated as an approximation.  As an alternative 404 

approach, we demonstrate the rT-exact method for an archetypical Procellaria species.  405 

 406 

In this example, we compare estimates of max from matrix, DIM (i.e. Eq. 2), and rT-exact 407 

methods ( max
MM , max

DIM , and max
rTe  ), and also estimate optimal survival using the rT-exact method (408 

opt
rTes ).  Our purpose is to compare the sensitivities of max to arT and the demographic parameters 409 

among the three models to identify those parameters that, for a given level of error, most 410 

influence point estimates of max.  By combining knowledge of sensitivities with estimates of 411 

parameter uncertainty, this type of analysis can help a researcher determine which model is most 412 
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appropriate for their data; for example, models that are sensitive to parameters which have large 413 

associated uncertainties would be expected to perform poorly.   414 

 415 

We first built a matrix population model for a generic Procellaria species.  We then selected 416 

parameter values by examining relevant species-specific estimates available from primary or 417 

secondary sources (Brooke 2004, Barbraud et al. 2008, Fletcher et al. 2008, Dillingham et al. 418 

2012, ACAP 2013, BirdLife International 2013), with specific details described in Appendix A.  419 

The resulting matrix was then used to estimate sopt  and max using the rT-exact method, assuming 420 

1rTa   based on the estimate from Niel and Lebreton (2005).  The rT-exact estimate of sopt was 421 

used for the matrix model and DIM approaches to estimate max.  Sensitivities of max to model 422 

parameters were then calculated using numerical derivatives.   423 

 424 

The rT-adjusted method for white sharks 425 

To demonstrate the rT-adjusted method, we built a matrix population model for the eastern north 426 

Pacific population of white shark.  In 2012, this population was petitioned for listing under the 427 

U.S. Endangered Species Act.  The National Oceanic and Atmospheric Administration (NOAA) 428 

convened a Biological Review Team (BRT) of government scientists to evaluate relevant 429 

scientific information and provide an assessment report (Dewar et al. 2014) that the Agency used 430 

to determine whether the white shark should be listed as a threatened or endangered species (the 431 

decision was to not list the species; 78 Federal Register 40104-40127). The population viability 432 

analysis for the BRT assessment was partially based on estimates of rmax, derived using our 433 

methods as presented here.  We began by building a demographic matrix model for the white 434 

shark, but parameter uncertainty meant that matrix model results, by themselves, were 435 
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unsatisfactorily imprecise.  Therefore, in combination with the matrix model, we used the 436 

estimates of allometric parameters (arT, rT) for sharks (i.e. based on our analysis of the data 437 

from Cortés (2002)), informed by estimates from the other taxa which had higher data-quality, to 438 

provide rT-adjusted estimates of intrinsic growth. 439 

 440 

Few vital rates are known precisely for white sharks, but variously informative priors can be 441 

placed on all key parameters (see Appendix A for details).  Drawing parameters from these 442 

distributions provides a prior distribution for matrix model parameters max opt
MMr T  that does not 443 

take the allometric model into account.  To incorporate the allometric model, we matched each 444 

matrix model draw with one from the allometric model ( max opt
Ar T ), but used a log-normal 445 

distribution in place of Eq. 4 so that rmaxTopt > 0.  Similarly, we accounted for uncertainty in rT 446 

by sampling from a log-normal distribution with a CV based on our analysis of the Cortés shark 447 

data (Cortés 2002).  Those iterations where the allometric and matrix models agreed formed the 448 

integrated, rT-adjusted posterior distribution. 449 

 450 

Analyses were performed using R 3.0.1 (R Development Core Team 2013).  For the Bayesian 451 

analysis of the Cortés (2002) shark data, the OpenBUGS variant (version 3.2.2; Thomas et al. 452 

2006) of BUGS (Lunn et al. 2000) was linked to R using the R2WinBUGS library (Sturtz et al. 453 

2005), with estimates based on 4 chains of 260,000 iterations with the first 10,000 iterations 454 

discarded and thinning set to 100, with good convergence diagnostics and low Monte Carlo 455 

error. 456 

 457 

RESULTS 458 
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 459 

Estimating allometric parameters for birds, mammals and sharks 460 

All three taxonomic groups showed strong relationships between rmax and Topt (Fig. 2), with R2 461 

from the log-log regression equal to 0.96, 0.91 and 0.72 for birds, mammals, and sharks, 462 

respectively.  In each case, the estimated slope was close to -1, with estimated slopes (± 95% 463 

confidence interval) equal to -0.93 ± 0.12 (birds),  -0.99 ± 0.10 (mammals), and -0.96 ± 0.46 464 

(sharks).  Both R2 and precision were lowest for sharks, which was expected given the 465 

uncertainties in the matrix model estimates of rmax for them. 466 

 467 

The allometric constants were similar for all three taxa, with 1rTa  .  Estimates of rTa  from Eq. 468 

4 were 1.07 ± 0.09 (birds), 1.17 ± 0.09 (mammals), and 0.97 ± 0.25 (sharks).  The associated 469 

standard deviations, rT, were estimated as 0.15 (birds), 0.30 (mammals), and 0.69 (sharks), 470 

accounting for all sources of noise (i.e. population-level variability and measurement error, as 471 

well as any model-based bias).  When using the Bayesian model to adjust for measurement error 472 

for sharks, ˆ 0.84rTa   (95% credible interval 0.65 to 1.05) and the remaining error reduces to 473 

ˆ 0.41rT   (0.23 to 0.61).  For an animal with a generation time of 10 years or more, this 474 

suggests that variation in rmax among populations is likely < 0.04 for any of these taxa.  475 

 476 

Case Study 1: Petrels 477 

For the rT-ideal population based on the demography of Procellaria petrels, we treated sopt as 478 

unknown and other parameters as known, and calculated rT-exact estimates of population growth 479 

( max
rTe ) and optimal survival ( opt

rTes ).  Using opt
rTes  in a matrix model and DIM (Eq. 2) allowed us to 480 
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compare sensitivities of three point estimators ( max
rTe , max

MM , max
DIM ) to demographic parameters to 481 

analyse approximate model performance.  The rT-exact estimate of the maximum growth rate 482 

when 1rTa   is max 1.070rTe   (or max 0.068rTer  ) and the corresponding estimate of optimal survival 483 

is opt 0.947rTes  .  The estimates of max and sopt are very similar to those presented by Dillingham 484 

and Fletcher (2011), who estimated sopt ≈ 0.94 using empirical data from a number of petrel 485 

species and max ≈ 1.074 using DIM. 486 

 487 

For the rT-exact method where sopt is unknown, intrinsic growth was most sensitive to arT and 488 

the proportion breeding (k), and least sensitive to age at maturity,  (Table 1).  Sensitivities were 489 

always smaller when using the rT-exact method compared to the matrix model or DIM for shared 490 

parameters.  Hence, relative model performance depends on sensitivities and uncertainties for 491 

those parameters not in common.  Compared to the matrix model, the impact on max of error in 492 

sopt of 0.01 in the matrix model is equivalent to the impact of error in arT of 0.15 in the rT-exact 493 

method, if the other parameters were known without error.  Compared to DIM estimates, the rT-494 

exact method has three additional parameters (c1, c2, which are the ratios of younger age-class 495 

survival rates to adult survival, and k; see Appendix A) not used by DIM, while DIM has one 496 

parameter (sopt) not used by the rT-exact method.  Because the rT-exact method is insensitive to 497 

c1, c2, and k, and DIM is highly sensitive to sopt, error of 0.10 in each of c1, c2, and k (in the worst 498 

case where all errors are in the same direction) has the equivalent impact of error of 0.016 in sopt.  499 

From a management perspective, this means that the rT-exact method would be expected to 500 

outperform DIM in most settings.  The exceptions would be where c1, c2, and k are highly 501 

uncertain or where sopt is measured with high precision. 502 

 503 
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Case Study 2: white sharks 504 

Distributions for λmax from the matrix model only, allometric model only, and the rT-adjusted 505 

method that integrates both models are in Fig. 3.  For this example, we set 1rTa   and sampled 506 

from a log-normal distribution with average population-level variation 0.4rT   (see Appendix 507 

A for details).  The value 1rTa   is consistent with the estimate from either Eq. 4 or the 508 

Bayesian model that adjusted for measurement error for sharks (see Appendix A), as well as the 509 

value for the other taxa with higher quality data.  The rT-adjusted distribution reflects 510 

uncertainty in matrix model parameters, but constrains the uncertainty so that Eq. 4 is satisfied.  511 

While still allowing for population-level variability, Fig. 3 shows the constrained distribution 512 

that results from incorporating allometric trends with the matrix model.  The rT-adjusted 513 

posterior distribution for λmax for white sharks has a mean of 1.050, SD = 0.017, and 95% 514 

credible interval of 1.022 to 1.091.  By comparison, the distribution of λmax for the matrix model 515 

alone had a mean of 1.059, SD = 0.028, included negative values, and had a substantially wider 516 

95% credible interval (1.008 to 1.114) that included unrealistically small values.  The variance 517 

for the rT-adjusted distribution was only 37% that of the variance for the matrix model (i.e., 518 

0.0172 / 0.0282 = 0.37), contains no negative values, and the credible interval represents a more 519 

plausible range, showing the benefits of the rT-adjusted model compared to a matrix model for 520 

this Case Study.  521 

 522 

DISCUSSION 523 

 524 

Generating robust estimates for demographic parameters and rmax, in particular, for long-lived 525 

species is a priority for both ecological research and conservation applications. Estimating 526 
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intrinsic growth from matrix models provides population-specific estimates, but precision can be 527 

unsatisfactory when important demographic parameters such as survival are unavailable or 528 

measured with low precision.  Here, we have presented two new methods that combine 529 

demographic information used for matrix models with broader ecological understanding 530 

garnered from empirical allometric relationships to generate improved estimates of intrinsic 531 

growth rates.  The first (rT-exact) method provides estimates of intrinsic growth for what we call 532 

an rT-ideal population (e.g., the expected growth rate for an archetypical population with a 533 

particular combination of adult survival and maturation age).  The second (rT-adjusted) method 534 

acknowledges that species may vary from some theoretical expectation and thus incorporates 535 

process error in the allometric constant (arT) to generate distributions for intrinsic growth that 536 

reflect this natural variability.  These methods can be applied generally, but are especially 537 

applicable for data-poor populations, for which neither matrix models nor allometric models are 538 

fully satisfactory.  As our case studies demonstrate, our methods provide biologically meaningful 539 

inferences about species life history parameters, and can inform conservation and management. 540 

 541 

As with all models, our approach depends on empirically validating the theoretical prediction 542 

with data; i.e. that the product rmaxTopt  is approximately invariant.  Our meta-analysis of data for 543 

birds, mammals, and sharks indicates that the theory is well-supported across several taxa with 544 

expected rmaxTopt ≈ 1 across the full range of generation lengths included in the datasets.  Data 545 

types and the amount of data used to evaluate this taxonomic generality varied by taxon.  For 546 

birds, rmax estimates were generated from matrix models for rapidly growing populations for 547 

which high-quality demographic data were available, and a broad suite of taxa were represented 548 

(Niel and Lebreton 2005).  Estimates for rmax for mammals were based on count data for dozens 549 
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of rapidly increasing populations, although the dataset was taxonomically biased toward certain 550 

orders with relatively high growth rates (e.g., many ungulate and carnivore species, few bats or 551 

primates).  For sharks, rmax was calculated from matrix models that relied on multiple indirect 552 

survival estimators derived for teleosts (Cortés 2002).  These differences suggest that estimates 553 

of the allometric constants are most reliable for birds and least reliable for the data-poor sharks.  554 

For the rT-adjusted method, quantifying population-level variation rT and accounting for that 555 

variation in predictive models is also required.  For birds and mammals, relatively high-quality 556 

data suggests that estimates of rT  primarily reflect the population-level variation that we are 557 

interested in, but still incorporate some amount of measurement error.  For sharks, we were able 558 

to separate some of the measurement error from population-level variation by adding an 559 

additional component to our model, but overall data quality was lowest for this taxon.  560 

 561 

Given available data and the limited number of taxa studied, it is unknown whether 1rTa   is 562 

general across all animal taxa or whether the similarities between values for these taxa were 563 

coincidental or only apply to relatively long-lived species (noting that taxa characterized by truly 564 

rapid growth potential such as teleosts or insects were not included in the analysis, nor were 565 

mammals that mature younger than 1 year and have multiple litters per year).  It is also unclear 566 

whether the larger estimate of rT  for sharks was a result of model-based bias and uncertainty, 567 

or possibly represents additional variation caused by greater phylogenetic diversity or 568 

poikilothermy in that taxon.  This suggests two areas of future research: (1) examining additional 569 

taxonomic groups to better explore the generality of our findings, and (2) determining the effect 570 

of model-based assumptions (e.g. from the use of indirect survival estimates) on the estimates of 571 

the allometric parameters for sharks.  572 
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 573 

The rT-exact method, designed to estimate intrinsic growth for a typical population by 574 

combining all available demographic data with knowledge of allometric patterns, was found to 575 

yield robust estimates of rmax for a long-lived seabird even when important demographic 576 

parameters (e.g. survival) are poorly known.  In fact, while our focus is on estimating rmax, we 577 

note that this method also can be used to estimate optimal survival and other demographic 578 

parameters.  Compared to methods such as DIM or matrix models that rely heavily on estimates 579 

of adult survival for long-lived populations, the rT-exact method is relatively insensitive to its 580 

parameter inputs and therefore error in any one has limited impact on the estimate of rmax.  We 581 

primarily focus on the effect of survival due to its importance in DIM and matrix models, but 582 

estimation of other demographic parameters can be challenging for long-lived species (e.g. age at 583 

first reproduction).  In settings where survival is estimated well and other parameters poorly, the 584 

rT-exact method would yield essentially the same estimates as DIM when using the constant-585 

fecundity model.  For data-poor populations that have reproductive information available, and 586 

where estimates of survival are poor or impacted by unquantified anthropogenic mortality, the 587 

rT-exact method would perform especially well compared to the others.  DIM and matrix 588 

methods risk large bias in rmax when sopt is measured poorly, while the rT-exact method reduces 589 

this risk by taking advantage of the opposite directions of those biases.  This is especially 590 

important in conservation settings that use reference point (e.g., mortality limit) estimators based 591 

on rmax.  For example, PBR, which has also been adapted for seabirds and sea turtles (Dillingham 592 

and Fletcher 2008, 2011, Curtis and Moore 2013, Richard and Abraham 2013), includes the 593 

parameter max maxexp( ) 1R r  , and is <0.10 for many of the long-lived marine megafauna to 594 
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which it is applied (Moore et al. 2013).  Small errors in maxR  translate to large proportional errors 595 

in the PBR, and therefore can have large management impacts (Dillingham 2010).   596 

 597 

The second method we present, the rT-adjusted method, extends the first by focusing on 598 

individual rather than archetypical populations.  While the rT-exact method is useful for 599 

predicting how we expect an archetype to behave and may be sufficient for many applications, 600 

these predictions may not be sufficiently accurate for individual populations that differ from the 601 

expectation, in which case population-level variation in rmax with respect to rmaxTopt must be 602 

accounted for.  For these settings, the rT-adjusted method uses allometric patterns to adjust 603 

matrix model estimates of population growth towards the allometric ideal, but still allows for 604 

variation from it.  The amount of adjustment depends on the distance between matrix model 605 

estimates of rmaxTopt and the allometric constant, the precision of matrix model estimates, and the 606 

normal level of variation from the ideal expected within a taxon.  While our analyses provide 607 

initial estimates for rT for three taxa, these estimates include sampling variance and thus over-608 

estimate population-level variance.  Future research that improves the precision of these 609 

estimates would make these methods even more useful. 610 

 611 

Like any method, these methods should be used with care.  While the primary purpose of the rT-612 

adjusted method is to improve precision of rmax estimates by using all available data, it also 613 

naturally removes inconsistencies between allometric and matrix models.  However, 614 

inconsistencies could highlight data or model errors, or an interesting population that does not 615 

follow the allometric trend.  For example, inconsistencies between allometric and matrix models 616 

could be a relatively simple way to identify whether the survival estimate used is potentially sub-617 
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optimal.  We therefore recommend that estimates from matrix and allometric models be 618 

compared to each other and to the integrated estimates from the rT-adjusted method (as shown in 619 

Fig. 3 for white sharks) as part of a quality control process.    620 
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Table 1. Sensitivity of max to the allometric constant (arT ), adult survival (s), the ratios of 795 

breeding success and juvenile survival to adult survival (c1, c2), age at first reproduction (), and 796 

the proportion of adults breeding (k) for an archetypical Procellaria sp. petrel for matrix, 797 

demographic invariant method (DIM), and rT-exact models.  Sensitivities were calculated based 798 

on the values arT  = 1, s = 0.947, c1 = 0.8, c2 = 0.9, = 7, and k = 0.75. 799 

Model-type 
Parameter Matrix DIM rT-exact 

arT na 0.106 0.073 
s 1.130 -0.512 na 

c1 0.091 na 0.028 

c2 0.081 na 0.025 

 -0.009 -0.008 -0.008 

k 0.097 na 0.030 
  800 
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FIGURE LEGENDS 801 

 802 

Figure 1.  The inverted relationship between optimal adult survival (sopt) and intrinsic growth 803 

(rmax) for matrix and allometric models can be used to predict rmax.  The allometric model states 804 

the product of intrinsic growth and optimal generation time (rmaxTopt) is approximately a constant 805 

(arT). When rmaxTopt = arT (Eq. 3) (a,b), we term this an rT-ideal population and consider it to 806 

represent an archetypical population. In (a), sopt is the only unknown, while in (b, c) there is 807 

uncertainty in multiple parameters.  In (a), the rT-exact solution (●) occurs where the matrix 808 

model solution (- -) intersects the allometric solution (DIM, Niel and Lebreton 2005). In (b), 809 

multiple demographic-parameter combinations from the matrix model within a small tolerance ( 810 

= 0.05) of DIM are rT-exact (●) while others (●) are not.  In (c), the rT-adjusted method allows 811 

individual species to deviate from being rT-ideal (rmaxTopt ~ N(; Eq. 4), with iterations near 812 

DIM more likely to be accepted (●) than not (●), but populations are not required to be rT-ideal.   813 

 814 

Figure 2. Log-log regressions of optimal generation time (Topt) versus maximum growth rate 815 

(rmax) for (a) birds (▲), (b) mammals (♦), and (c) sharks (●).  The regression slopes were set to 816 

−1 as predicted by Equation 1, and the regression fit only the intercepts. 817 

 818 

Figure 3. Distributions for λmax for white sharks using matrix model (black), DIM (clear), and rT-819 

adjusted (grey) methods.  Distribution of matrix model estimates solely reflects measurement 820 

uncertainty in matrix model parameters.  Expected λmax from the allometric-based DIM are 821 

calculated using the estimator of Niel and Lebreton (2005) and incorporate population variability 822 

from the allometric constant (arT = 1, rT = 0.4, CV(rT) = 0.35, generated from a log-normal 823 
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distribution) as well as uncertainty in age at first reproduction (α) and optimal adult survival 824 

(sopt).  The distribution from the rT-adjusted method accounts for uncertainty in all demographic 825 

parameters adjusting for allometric patterns and population variability. 826 
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