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Species distribution models (SDMs) have become key tools for describing and predicting

species habitats. In the marine domain, environmental data used in modeling species

distributions are often remotely sensed, and as such have limited capacity for interpreting

the vertical structure of the water column, or are sampled in situ, offering minimal spatial

and temporal coverage. Advances in ocean models have improved our capacity to

explore subsurface ocean features, yet there has been limited integration of such features

in SDMs. Using output from a data-assimilative configuration of the Regional Ocean

Modeling System, we examine the effect of including dynamic subsurface variables

in SDMs to describe the habitats of four pelagic predators in the California Current

System (swordfish Xiphias gladius, blue sharks Prionace glauca, common thresher

sharks Alopias vulpinus, and shortfin mako sharks Isurus oxyrinchus). Species data

were obtained from the California Drift Gillnet observer program (1997–2017). We used

boosted regression trees to explore the incremental improvement enabled by dynamic

subsurface variables that quantify the structure and stability of the water column:

isothermal layer depth and bulk buoyancy frequency. The inclusion of these dynamic

subsurface variables significantly improved model explanatory power for most species.

Model predictive performance also significantly improved, but only for species that had

strong affiliations with dynamic variables (swordfish and shortfin mako sharks) rather than

static variables (blue sharks and common thresher sharks). Geospatial predictions for all

species showed the integration of isothermal layer depth and bulk buoyancy frequency

contributed value at the mesoscale level (<100 km) and varied spatially throughout the

study domain. These results highlight the utility of including dynamic subsurface variables

in SDM development and support the continuing ecological use of biophysical output

from ocean circulation models.

Keywords: species distributionmodeling, ocean circulationmodels, remote sensing, spatial ecology, top predator,

ROMS, boosted regression trees
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FIGURE 5 | Predicted habitat suitability for each species for an example day, 1 December 2012. The first row shows predicted habitats using simulation 2 (static and

dynamic surface variables), the second row shows predicted habitats using simulation 3 (static and dynamic surface and subsurface variables), and the third row

shows the difference in probabilities between simulations 2 and 3. The fourth row shows four example dynamic variables for the same day (Sea Surface Temperature,

Sea Surface Height, Bulk Buoyancy Frequency, and Isothermal Layer Depth). Species are indicated by a black silhouette: swordfish (first column), blue sharks (second

column), common thresher sharks (third column), and shortfin mako sharks (fourth column). Contours on the first and second row are at 0.6 and 0.2, contours on the

third row are at 0.1 and −0.1, and contours on the fourth row equate to the 25 and 75% quantiles.

predators, including the study species, spend much of their time
in surface waters despite foraging in waters below the mixed
layer (Table 1). The common thresher shark partial response
curve showed a unique response to ILD, which appears to be
related to a weak negative correlation between ILD and SST
(−0.54 Pearson correlation coefficient). As SST has a greater
relative influence on common thresher sharks than ILD, the
preference for colder SST values better describes occurrence,
which results in no strong pattern seen with ILD < 70m. This

disconnect between partial effect curves is typical, and while plot
interpretation can be challenging when variables are correlated,
these plots represent an effective way of visualizing the effects of
each variable (Elith et al., 2008). Given the response common
thresher sharks showed here, future work could explore the
utility of other subsurface variables in describing their habitat
suitability, including model-based upwelling indices (e.g., Jacox
et al., 2014) that would spatially align with their predominantly
coastal distribution.
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Integration of the Vertical Dimension in
SDMs
Integrating dynamic subsurface variables into marine SDMs
had a positive effect on describing the horizontal habitat
suitability of four pelagic species. The mechanism behind
this result is likely a combination of the main effect of ILD
and BBV within the model framework, as well as the co-
variation with other variables (Figure S2). This co-variation
occurs as a result of including multiple variables in the statistical
framework. While certain variables had a higher relative effect
than others, no single variable could perform as well as the
multi-variable models, or even perform at a standard required
for conservation planning (AUC > 0.75; Table S2) (Pearce
and Ferrier, 2000). There is a trade-off in the number of
variables to include in a SDM, where a simple model is easier
to interpret but may come at a cost of decreased predictive
performance, while a complex model is challenging to interpret
ecologically (and especially as response curves change) but
may have increased predictive performance (Friedman et al.,
2001). Furthermore, there is potential for overfitting to occur as
the number of variables included in SDMs increases, however
regularization methods advised for boosted regression trees
reduces the risk of overfitting (Elith et al., 2008). Future research
could build on our results by including additional species
and additional model frameworks (e.g., generalized linear and
additive models; machine learning). There is further scope to
explore subsurface variables in SDMs (e.g., oxygen) and we
acknowledge that the subsurface variables explored here (BBV
and ILD) may not be sufficient for all marine species. Typically,
environmental variables included in SDMs are best informed
from a priori expectations based on species ecology (Fourcade
et al., 2018).

Using ocean circulation models for SDM development can
maximize the use of catch data and allow model prediction
to be done on large spatiotemporal scales. However, not all
ocean circulation models are equal and care must be taken to
ensure outputs are appropriate for use. The dynamic surface
variables obtained from this ocean circulation model are a best-
case scenario of data availability, in that data from satellites and
quarterly in situ data surveys are incorporated (data assimilative)
but typical issues with satellite-derived information are avoided
(i.e., cloud cover, patchiness, resolution mismatch, temporal span
of products; Scales et al., 2017a). Ocean circulation models also
provide a consistent framework to access data across periods of
changing observational assets (i.e., different satellite eras). Output
from regional ocean models, and especially data-assimilative
models, is unfortunately limited to certain regions and time
periods such that its use will be precluded in some SDM
development. However, when data are available for the time
period and spatial domain of interest, the added benefits of using
ocean circulation data can be powerful (Becker et al., 2016; Scales
et al., 2017b).

Integrating dynamic subsurface variables improved the
explanatory power and predictive performance of SDMs for
highly migratory species. The benefits to model explanatory

power support the future use and inclusion of such variables,
where possible, to get the best ecological understanding of the
environmental drivers on species distributions. Improvements
to predictive performance, while significant, were not large
for a model that already incorporates many dynamic surface
variables. For an operational version of such a model (e.g.,
Hazen et al., 2018) the benefits of including subsurface variables
should be weighed against the resources needed to obtain
them and evaluate their contribution. However, more generally
there is added benefit in using ocean circulation models—
whether variables are vertical or horizontal, or both—in SDM
applications, as ocean circulation models: (i) eliminate data
gaps that are prevalent in satellite data and in situ sources;
(ii) provide continuity across periods of changing observational
assets; (iii) provide all variables at common spatial and temporal
resolutions; and (iv) can be configured to predict into the
future. Operational models require continuous collection and
collation of data products, a process that is greatly streamlined by
having a single source for ocean circulation model output rather
than multiple remotely sensed data providers. This improved
efficacy can support conservation planning, decision-making,
and management (Hobday et al., 2018; Stelzenmüller et al., 2018)
on near real-time (Maxwell et al., 2015), seasonal (Brodie et al.,
2017), and longer timescales (Almpanidou et al., 2016; Ban et al.,
2016).
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